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Abstract

Insurgency and guerrilla warfare impose enormous socioeconomic costs and often
persist for decades. This paper studies the detection of unobserved coalitions of insur-
gent groups in conflict areas and their main politico-economic determinants. Through
the use of detailed geocoded incident-level data available from the United States World-
wide Incidents Tracking System (WITS) we present a novel methodology to the study
of the economics of insurgency and provide an application in the context of the Afghan
conflict during the 2005-2009 period. We prove statistically that the Afghani Taliban
are not an umbrella coalition, rather a highly unified group and show how their span
of control grew substantially post-2007 beyond ethnic Pashtun areas.
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1 Introduction

Insurgency is typically defined as armed rebellion against a centralized or national au-
thority'. Among the various forms of armed conflict, insurgency is possibly one of the most
opaque, as intertwining connections with the population blur the lines between combatants
and civilians (Kilcullen, 2009). In insurgencies and guerrilla warfare the relative strength
and even the identity of potential negotiating counterparties are unsure, and in the words
of Fearon (2008) “there are mo clear front lines”. Nonetheless, insurgency and guerrilla
conflict have exerted enormous socioeconomic costs and in the post-World War II era they
rank among the most detrimental and perduring forms of internal conflict? and of political
violence (O’Neill, 1990). Our paper offers a novel contribution to the empirical analysis of
these asymmetric irregular wars.

As a way of more precise motivation, consider the U.S.-led counterinsurgency operation
in Afghanistan3. Over the 2001-2011 period and on the U.S. side alone, this operation
cost the lives of more than 1,800 troops and more than $444 billion in military expenses.
Uncounted scores of Afghan citizens were also extremely adversely affected. Soon into the
operation, the U.S. military acknowledged through drastic adjustment in tactics that the
Afghan armed conflict presented complex differences from previous large scale military op-
erations. Fighting an established alliance between the Afghan Taliban insurgents and the
al-Qaeda terrorist organization, front lines appeared blurred and even the identity of a uni-
fied operating adversary seemed doubtful. There was (and still is) open disagreement among
experts on whether the Taliban were (or currently are) a unified fighting organization rather
than an umbrella coalition of heterogeneous forces. For instance, the extent of the organiza-
tional control of Taliban leader Mullah Mohammed Omar over the powerful Haqqani faction

4

and the Dadullah network is frequent subject of discussion®. Similarly, the Hizb-i Islami

L According to O’Neill (1990) “Insurgency may be defined as a struggle between a nonruling group and
the ruling authorities in which the nonruling group consciously uses political resources (e.g., organizational
expertise, propaganda, and demonstrations) and violence to destroy, reformulate, or sustain the basis of one
or more aspects of politics.”

2For a recent and exhaustive review see Blattman and Miguel (2010).

3 Afghanistan is also going to be the object of the paper’s main application. Table 1 includes for ease
of reference a summary of the US Afghan counterinsurgency timelined produced by the Council of Foreign
Relations.

4Note for instance the UN report (2013) stating that “Despite what passes for a zonal command structure



. In an insight-

faction is considered by many a separate entity from the Taliban proper
ful, yet qualitative essay Dorronsoro (2009) discusses precisely how “The Taliban are often
described as an umbrella movement comprising loosely connected groups that are essentially
local and unorganized. On the contrary, this report’s analysis of the structure and strategy
of the insurgency reveals a resilient adversary, engaged in strategic planning and coordinated
action.”® Ultimately, this is unsettling: Understanding the extent of territorial control and
population support of insurgent groups are essential not just to military operations, but for
our understanding of the internal organization of rebel groups, assessing their cohesion, pre-
venting selective violence by insurgents, and ultimately inform any effort of reconstruction
of areas affected by conflict.

This paper shows how, by focusing on specific events of armed violence, one can recover
the number and extent of different insurgent groups in activity on a specific territory, features
of the data that are typically unobservable to the econometrician/analyst and essentially
latent to the conflict. This objective is achieved through inference from the co-occurrence
of violent events over time across different areas, under the working assumption that only
an insurgent group with foothold in two separate areas can jointly carry out attacks in both
areas simultaneously and on a repeated basis. Once the number of different guerrilla groups
and their territorial extent has been statistically ascertained, we assess its main empirical
determinants and its economic and social consequences for specific areas and for the non-
combatant population. We also produce an analysis of shifts in insurgent presence over
time.

The paper aims at addressing four broad questions: 1. When faced with multiple violent
incidents in multiple regions, is it possible to identify whether specific incidents are isolated

idiosyncratic events as opposed to organized attacks by coalitions of assailants? 2. Is it

across Afghanistan, the Taliban have shown themselves unwilling or unable to monopolize anti-State violence.
The persistent presence and autonomy of the Haqqani Network and the manner in which other, non-Taliban,
groupings like the Lashkar-e-Tayyiba are operating in Afghanistan raises questions about the true extent of
the influence exerted by the Taliban leadership.”

SFotini and Semple (2009) state explicitly that “the Taliban is not a unified or monolithic movement”
and Thruelsen (2010) that “the movement should not be seen as a unified hierarchical actor that can be dealt
with as part of a generic approach covering the whole of Afghanistan”. See also Giustozzi (2007).

61n stark contrast, the Pakistani Taliban are indicated in the same essay as a clearly non-unitary umbrella
organization.



possible to identify from incident data alone how many separate and different insurgent
groups (if any) are attacking? 3. What are the economic determinants driving the diffusion
and segmentation of the rebels within a specific region and across regions? 4. What are the
consequences of insurgent control on civilian population wellbeing?

To summarize the estimation methodology in more detail, we can think of a territory of
conflict as a grid of points over which at any moment in time violent incidents can happen. A
point on the grid represents the stylized district (its centroid). The data generating process
underlying the incident occurrence is stylized. This is not without loss of generality, but
lacking detailed data on the internal organization and planning strategy of insurgents and
counterinsurgency forces, one has to remain parsimonious. Our main working assumption
is that attacks in two different districts can occur in the same day if an insurgent group is
able to operate in both and finds it worthwhile to carry out such simultaneous missions’.
Deloughery (2013) reviews extant studies and presents systematic evidence of advantages
of simultaneous attacks for terrorist organizations in terms of media coverage and appeal
in the recruitment of new fighters -incentives that operate within insurgent organizations as
well®. With some fairly general assumptions on the time covariance across districts, we detect
which sets of districts tend to systematically co-move over time (i.e. repeatedly experience
attacks in the same days) and, from this, infer the set of districts in which each guerrilla
group operates. The estimators we present are flexible and allow for the same district to be
under dispute by many guerrilla groups or by none. The outcome is an estimated number
of guerrilla groups and, for each group, a measure of their geographic span of control, and
intensity of presence in a district.

The main empirical results of the paper are as follows. We conclude that insurgent

7 Alternatively, simultaneous incidents may simply happen occasionally by chance, due to random un-
organized violence. If it is not worthwhile to carry out simultaneous attacks for a multi-district insurgent
coalition, the estimator is bound to reject any coalition.

8The tragic events of 9/11 in the United States are also testament to the salience of such simultaneous
attacks. In fact, simultaneous attacks and suicides have been a trademark of international jiadist organiza-
tions and of al-Qaeda in particular. This makes the approach more suited to the Afghan insurgency case.
Other examples abound. In southern Thailand insurgent movements adopted similar tacticts. “On April 28,
2004 groups of militants gathered at mosques in Yala, Pattani, and Songkhla provinces before conducting
simultaneous attacks on security checkpoints, police stations and army bases.” (Fernandes, 2008, p.258) .
The Indian Mujahideen, responsible for the 2008 Mumbai attacks, typically carry out simultaneous attacks
(Subrahmanian et al., 2013, ch. 6 on Simultaneous and timed attacks). Kurdish independentists and the
Tamil Tigers are also known to have adopted simultaneous attacks.



activity in Afghanistan is best represented by a single organized group, rather than sev-
eral independent groups, and that the extent of this group is largely determined by ethnic
boundaries. We then consider changes in the extent of this group between two time peri-
ods: 2004-2007 compared to 2008-2009. We find that insurgents spread largely to districts
adjacent to those where they were already present (following a specific “oil spot” strategy).
We also find that there may have been some increase in the support of non-Pashtun ethnic
groups for the insurgency; however, this result is somewhat dependent on the econometric
specification used.

An increasing amount of attention as been devoted within the fields of development
economics and political economy to the study of internal armed conflicts within countries,
including prominently civil wars and insurgency. Indeed, economists have long been inter-
ested in the analysis of violence and conflict, at least dating back to the theoretical work
of Schelling (1960), Tullock (1974), Hirshleifer, (1991,1995a,b, 2001) and Grossman (1991,
2002). Even more emphatically, political scientists have dedicated to the study of conflict a
large part of their work in the field of international relations.

Precisely from political science and economics some of the most recent and novel insights
in the study of insurgency have emerged (Berman, 2009; Berman et al., 2011; Condra et
al., 2010; Blair et al., 2012; Condra and Shapiro, 2012; Cullen and Wedmnan, 2013; Bueno
de Mesquita, 2013). As underlined by Blatman and Migueal (2010), most remarkable in
this most recent wave of research have been a strong empirical inclination and an increasing
attention to micro-level (typically incident-level) information. The use of precisely geocoded
micro data has been a point of departure relative to more established “macro” empirical
approaches, based on country level information or aggregate conflict information (for notable
instances, see Fearon and Laitin (2003), Boix (2008), Collier and Hoeffler (2004), Collier and
Rohner (2008), among the many).

This paper follows in these footsteps with a specific emphasis on the analysis of insur-
gency and small wars. Indeed, we do not address conventional warfare. In the way of
motivation for this specific choice, much less is known about non-conventional warfare (and
its consequences on civilian populations) than what is known about wars among nations.

Economic or statistical evidence on the role of anti-government guerrilla activities is still



sparse, even as such activities cause much damage worldwide and appear quantitatively to
be the predominant form conflict in civil wars since 1945 (Fearon, 2008, Ghobarah et al.,
2003). Insurgents’ strategies are not generally well understood nor the subtleties of their
interactions with noncombatant population (Gutierrez-Sanin, 2008; Kilcullen, 2009). Fi-
nally, insurgent activity is also often linked to terrorist activities and its economic study
directly connects with a similarly growing literature on the economics of terrorism (Bueno
de Mesquita and Dickson, 2007; Benmelech, Berrebi, Klor, 2012).

The paper is organized as follows. Section 2 develops our methodology for the estimation
of coalition structures among insurgent groups. We describe our data, particularly the
Empirical Studies of Conflict Project incident-level Afghan data, which have been generously
made publicly available in Section 3. The analysis of the determinants of the insurgent

coalition and its consequences is developed in Section 4. Section 5 concludes.

2 Econometric Model

The objective is to determine whether insurgent activity in Afghanistan features only a
single organized group, or several, and what the extent of these groups are. To allow for
the possibility that there are no organized groups present in a given location even though
attacks occur, the model will include the possibility of random attacks from unorganized
local actors. The number of organized groups that best matches the observed data can then
be estimated based on our econometric model.

Let locations be indexed by ¢, and let there be a total of N locations at which attacks
occur. For the application to the Afghan data, locations will be taken to be Afghan districts.
In the base model presented below (which will be based on spectral clustering), it is assumed
that there is at most one organized group in any given district. A modified model (based
on non-negative matrix factorization) will also be presented that can accommodate several
organized insurgent groups in a given district.

Let organized insurgent groups be indexed by 7, and let J be the total number of such
organized groups. Both our approaches allow for there to be no organized groups in a given
district, and also allow for the possibility that there is no observed inter-district structure in

the attack data.



Specifically, suppose that observed attacks may be initiated either by unorganized local
militants, or by local members of an organized group. Let ¢; be the number of unorganized
local militants in district 7. Let a;; be the number of members in district ¢ of organized
group j. Initially it will be assumed that for any given 4, c;; > 0 for at most one j, but this
will be relaxed below.

Let time be discrete and indexed by t. In the Afghan data, the time periods used will
be days. In each time period, the probability that a unorganized local militant launches an
attack is 1, which does not change across time. The decision by unorganized militants to
attack is independent of the decision of anyone else (unorganized militant or group member).
The expected number of attacks by local militants in district ¢ at time ¢ is thus n¢;, and the
variance within district ¢ across time is (1 — n)¢;. The covariance in these attacks between
two districts ¢ and i’ is zero: the attack decisions are made independently, and the probability
of an attack is constant.

In contrast to unorganized militants, members of an organized group are more likely to
attack on some particular days than on others. Let €;; be the probability that a member of
group j will attack at time ¢. This probability is the same for all members of group j and
whether any given member attacks is independent of other attack decisions after conditioning
on the attack probability €;;. Across time, the covariance of attacks between two members of
the same group is thus o2, which will indicate the variance of e. Assume that for any other
group j', €j; is uncorrelated with €;,. Thus, the covariance of attacks between two members
of different groups is zero.

Consider members of group j. If there are ;; members in district ¢ and «;; members in
district 4/, then the covariance in attacks over time between these two districts, for members
of group j, is ajjay;0%. Summing over members of all groups, the covariance in attacks
between districts ¢ and ¢ will be > i aijayjo®. Now consider the covariance matrix I' for
attacks, where the entry in row ¢ and column i’ gives the covariance in attacks across time
for these two districts. This matrix can be decomposed as I' = I'p + 'y, where I'p is a

diagonal matrix and I'y is a “hollow” matrix (main diagonal zero) with the form
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This decomposition is considered because the diagonal entries of the covariance matrix do
not provide useful information regarding the group membership of districts: diagonal entries
are a sum of variance from unorganized militants and variance from organized groups, and
there is no obvious way to distinguish between these two elements.” Thus, for estimating
group structure, only the off-diagonal entries of the covariance matrix will be used. As a
normalization, set 0% = 1. Let v = > ;04 denote the off-diagonal entry on row i and
column ¢ of I'y. Let 7, be the corresponding entry of the sample covariance matrix in the
observed sample. Estimation will be based on I'y, the sample covariance matrix ignoring
the diagonal entries.

The model just presented is clearly a stylized model of the attack behaviour of insurgent
groups. The model is not without loss of generality, but lacking detailed data on the internal
organization and planning strategy of insurgents and counterinsurgency forces, a parsimo-
nious model seems most appropriate. A particularly strong assumption made in the model
is that the members of an insurgent group do not move between districts: a given group j
has a certain membership o;; in district 4, and those members will either be encouraged to
attack in a given period (for example a draw of high €;;), or not (low €;;). A very different
model would be one in which members of an insurgent group are mobile, and in any given
period have the choice of attacking in one of many districts. This latter model implies that
organized groups should lead to negative covariances ~;;, as insurgent group members who
attack in district 7 could not also be attacking in district ¢ in the same period. In contrast,
the model presented above suggests ~;; should be positive if the same insurgent group j has
members in both ¢ and 7', as attacks in both ¢ and ¢ will be higher in periods when €, is

high, and lower in periods when €j; is low. In the case of the Afghan data, the observed

9The diagonal entries of I do not in general have a useful form. For example, even in the very simple case
where there is only one group and €; is uniformly distributed on [0, 8], then the ith diagonal entry would
be a non-trivial nonlinear expression ll’—;(% + (a1 — 4))a1 + €m(1 — n). The covariance matrix is thus used
throughout rather than the correlation matrix.



covariances « are generally positive, and qualitative research also suggests that a model in

which there is not substantial substitution in attacks across districts is most appropriate.!”

2.1 Base model

Estimates &;; are desired: these give the estimated number of members in district i
of group j. An object of particular interest, however, is also J, the number of organized
insurgent groups. J is an integer, and estimation strategies for this sort of parameter do
not typically yield confidence intervals of the sort that would be typical for a continuous
parameter. While the model described above does not appear to correspond exactly to any
discussed previously in the literature, it is close enough to problems addressed by spectral
clustering and non-negative matrix factorization. These two approaches can be used to
produce estimates J and é.

An approach based on spectral clustering will be used as the base estimation strategy,
while other techniques will be considered in following subsections. It is difficult to determine
the properties of the estimator based on spectral clustering, but there is a substantial statis-
tics literature related to the later approach based on non-negative matrix factorization. This
literature relies heavily on bootstrap simulations, but produces only point estimates and not
accompanying confidence intervals. Confidence intervals for & and J are thus not reported
below, but the bootstrap simulations suggest that some important null hypotheses can be
rejected.

In graph theory, spectral clustering is a technique used to partition nodes of a graph
into clusters. A full review of the methodology and some of its application in statistics and
computer science is available in Luxburg (2007). Traditional clustering algorithms such as
k-means are known to perform poorly when used directly on a highly dimensional matrix
such as 'y, but spectral clustering is well suited for this sort of data structures through

the addition of an explicit dimensionality reduction phase in its design. KEstimation via

10T here is substantial evidence of the strategic role of simultaneous and timed attacks initiated by insur-
gents (Deloughery, 2013). The evidence reported in the literature on international jihadist movements and
the tactics used by insurgents in Afghanistan supports our assumption. So does evidence from insurgencies
across Asia and Africa (Subrahmanian et al. 2013; Fernandes, 2008; Anderson, 1974). In addition, attack
data for Afghanistan is available at a daily frequency. As will be shown by later bootstrap simulations,
the large number of time periods available makes it possible to reject at reasonable confidence levels the
possibility that the observed structure of attacks is due purely to random variation.



spectral clustering requires an additional assumption that is relaxed below: specifically, it

is necessary to assume that the various insurgent groups present do not have overlapping

territories. That is, there is at most one organized group present in any given district j.
Based on this assumption, reordering of the districts ¢ allows 'y to be written as a

block-diagonal matrix:

ry o
J
0 . TY,

where there are a total of J organized groups, and each ng has the form given in Equation
1. The value of individual matrix entries ~; is essential for estimating the degree of group
presence in each district. Here I'y corresponds to the adjacency matrix for a weighted
undirected graph.!!

To perform spectral clustering, a technique following following Shi and Malik [2000] will
be used.!? This technique is based on a “graph Laplacian” matrix, which is constructed from
the adjacency matrix: the graph Laplacian has off-diagonal entries equal to the negative of
those of the adjacency matrix, and diagonal entries such that all rows and columns sum
to zero. The approach is based on examining the eigenvalues of the graph Laplacian. The
number of zero eigenvalues of the graph Laplacian matrix will correspond to the number of
connected components of the weighted undirected graph described by the adjacency matrix.

The intuition for this result is relatively straightforward. Setting the diagonal entries

so that rows and columns sum to zero ensures that the rows (and columns) of the graph

1 An estimate of the number of organized groups present, J, can also be obtained based only on which
matrix entries are zero and which are non-zero. In this case, the sample covariance matrix used would be

ry o

- J

3) fy—| O T
0 .. T

where each f‘JH matrix has zeros on the diagonal, and ones in all off-diagonal entries. Tz thus has the form
of an adjacency matrix for an undirected graph: districts correspond to the nodes of this graph, and there
is an edge present between districts ¢ and i’ if the same organized group is active in both districts. One
advantage of the this binary classification is that it emphasizes the relationship between spectral clustering
and graph theory.

2T uxburg [2007] provides a summary of this method.



Laplacian corresponding to each qu block are linearly dependent. qu is full rank: each row
of TV is a vector of 1s with a single 0 in the diagonal. The transformation to the graph
Laplacian reduces the rank of each block by one. Thus, the reduction in rank of the overall
graph Laplacian, relative to the intial I'y will be equal to the number of blocks, which is the
number of organized groups. This is equivalent to the number of zero eigenvalues because
this is the dimension of the nullspace.

Let D be a diagonal matrix with entries such that the rows of L = D — I'y sum to
zero. If L were known, the the number of organized groups would be equal to the number
of zero eigenvalues of L. However, the data available gives the sample covariances 7;; rather
than the true -, and thus I'y; is observed instead of I'yy. A simple modification of Shi
and Malik [2000] is thus used: use 'y to construct L, and then examine the eigenvalues of
this matrix. Clustering is thus feasible, because it is based on statistics from the observed
sample. estimator using L is a consistent estimator for the clusters that would be obtained
using the true graph Laplacian L. Further details are provided in Appendix A.

In a finite sample, the eigenvalues calculated from L are subject to finite sample variation.
In particular, random variation will result in positive 7;; entries in some cases where the
true v, is zero, and negative 7; entries where the true ~;; is positive. This problem is
particularly severe for districts ¢ for which there are few attacks. The data provides little
information on the group structure in these districts, and if one object of interest is J, the
total number of groups, the inclusion of these particularly noisy districts could result in a
substantial amount of additional noise in the estimate of J.

A first step to dealing with this problem is to exclude districts with very few attacks from
estimation: thus, for the analysis of the Afghan data, the spectral clustering approach will use
data only for those districts in which there were 3 or more attacks and we experimented with
several different cutoffs. This approach does not fully solve the underlying issue, however:
eigenvalues that would be zero asymptotically will not be zero in a finite sample, because
some of the entries that are zero in 'y will be positive in the observed I'y;. When using a
covariance matrix that includes this finite sample variation, it is thus necessary to account
for the fact that eigenvalues that are zero in the population may not be zero in the sample.

The literature on spectral clustering provides a variety methods to determine how reliable

10



an estimate can be obtained by examining eigenvalues. We check the reliability of our
estimated .J by considering “eigengaps” similar to those used by Ng, Jordan, and Weiss
(2002). This method is based on matrix perturbation theory, and was originally intended for
the case where the true laplacian L was observed directly. When used with a noisy matrix,
the method still provides an heuristic indication of the reliability of the estimated J.

Begin by sorting the eigenvalues A of L in increasing order, such that \; is the smallest
and Ay the largest.!® The difference A\yy; — )\ is the kth “eigengap”. Ng, Jordan, and
Weiss (2002) argue that a large eigengap indicates that perturbation of the eigenvectors
of L would not change the clusters produced by spectral clustering. Luxburg (2007) thus
suggests that the right choice for J is a number such that )\ is “small” for k < J , and the
Jth eigengap is large. The intuition here is that if there truly are J eigenvalues that are
zero, then these appear to be non-zero in the finite sample only due to random variation. In
contrast, the J + 1th and larger eigenvalues are strictly positive even if the true L were used.
An examination of the Jth eigengap thus provides a heuristic test of whether the choice of
J was reliable, or whether small changes due to random variation might result in a different
number of zero eigenvalues. The underlying difficulty here is determining what exactly

4

constitutes a “zero” eigenvalue, when there is finite sample variation. A large eigengap
provides some confirmation that an appropriate definition of “zero” has been chosen.

After calculating an estimate J for the number of organized groups, and checking via
the eigengap approach whether this estimate appears to be reliable, a remaining problem
is to determine which insurgent group is present in which district. This problem is quite
close to a classical k-means problem, where k is now known.'* There are thus numerous
possibilities for determining which insurgent group is active in a given district, including
approaches based on eigenvectors, such as are mentioned in Ng, Jordan, and Weiss (2002).
The empirical results below will show that J = 1, and we thus do not discuss further how

to deal with the case where J > 1, other than noting that many standard methods are

available.

13Here we continue to consider only districts that have a certain minimum number of attacks, but simplicity
the notation assumes that no districts are excluded on this basis and thus there are still N districts, and N
eigenvalues.

“For a standard reference here, see Hastie, Tibshirani, and Friedman (2009).
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While it is relatively straightforward to obtain a consistent estimate for J, the total
number of organized insurgent groups, a consistent estimate for «;; is more challenging. The
main difficulty here is that spectral clustering literature generally assumes that the true graph
Laplacian L = D — I'y is observed, whereas the data provides only L, a graph Laplacian
that includes noise due to random variation in the attack data. However, in the case where
the number of districts, IV, is large, there is a computationally trivial approximate estimator
for a;.

Specifically, suppose that each organized group that is present has members in a large
number of districts, and that no single district has a particularly large . Let I; be the
set of districts that have members of organized group J. Then, since an assumption of the
spectral clustering model was that the organized groups do not overlap, an estimate of «;; for
t € I; can be produced via the following approximation, using I_”[‘{, the relevant block of T'z.
Specifically, note that a sum across the row of F}{ corresponding to district ¢ is ), i Qi it

If there are a large number of districts with members of j, then it is reasonable to use the

approximation
(4) E Q05 =~ E QO
il i i!
= Qg E o
il
= Q54

where a; = )., ys; is the same for any choice of district ¢ in ;. The sums of the rows of
each block Ff;{ thus give the relative prevalence of organized group members in each district.
This approximation is particularly interesting in the case where there is only one group:
in this case the sums of the rows of I'y give the relative of prevalence of group members
across districts. This approximate estimator becomes increasingly correct as the number of
districts that each organized group has members in grows. While it would be possible to
use non-linear programming or other techniques to develop an estimator with more desirable
properties, the approximation estimator has at least two advantages. First, the estimator has
an intuitive interpretation: I'y is a covariance matrix, and the sum across the off-diagonal

entries of a row of 'y thus gives an indication (in a heuristic sense) of how closely linked
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attacks in a given district are with attacks in other districts. Second, if in the data a given
district ¢ experiences only a small number of attacks, then the off-diagonal entries 7;;; will be
relatively small for that district, and thus do not introduce substantial noise into estimates
&y for other districts i'. Developing an unbiased estimator that also posessessuch properties
appears to be a non-trivial undertaking.

To summarize, for the base model the specific estimator used is the following. A graph
Laplacian L is calculated based on observed attack data. The eigenvalues of L are examined,
considering only those districts that have a certain minimum number of attacks (three in the
Afghan data actually used). The estimate J for the number of organized groups is equal to
the number of these eigenvalues that are zero. Eigengaps are then examined to determine
how reliable this estimate appears to be.

Two potential problems with this approach based on spectral clustering can be addressed
using an alternate technique. First, the actual group structure may be overlapping, with
multiple groups present in a single district. Second, hypothesis tests are difficult to per-
form: the distribution of eigenvalues resulting from random variation in finite samples is
not obvious, and existing literature mostly assumes that the observations to be clustered
are observed without noise. These issues can be addressed using an approach based on

non-negative matrix factorization.

2.2 Non-Negative Matrix Factorization Model

Begin by supposing that the number of organized groups J is known, and consider an
estimator that chooses ¢;; for each district ¢ and group j to satisfy, to the extent possible,

the set of restrictions
Vir = Z QijQuirj
J
If there are N districts, there are N(N — 1) /2 restrictions: one for each off-diagonal element

in one half of the symmetric covariance matrix. If there are J groups, there are N.J param-

eters to be estimated: one &;; for each district ¢ and group j.'> A necessary condition for

5]gnoring the diagonal entries of I' means that the non-negative matrix factorization problem considered
in this paper is not the same as that considered in Ding, He, and Simon [2005], where the authors show an
equivalence between NNMF and spectral clustering.

13



identification is thus that (N —1)/2 > J.1% In the data used the number of districts is large
relative to plausible numbers of groups, and thus this inequality holds strictly and a penalty
function is required. The estimator used for the «;; will be

argmin ||Ty — T'y)?
Qi >0

where the off-diagonal entry of [y in row i and column ' is > ; Gij0yj, and the diagonal
entries are all zero.

From a numerical perspective, the easiest norm to use is the element-wise norm. With
this norm, the estimator can also be expressed as
(5) argmin Z Z(’_m/ — Z Guijuing)?

@i 20 ]

The major difficulty with implementing this estimator is that N is large. Thus, even
when considering only a small number of groups, the number of parameters that must be
estimated is large. Recent optimization algorithms such as Birgin, Martinez, and Raudan
[2000] appear to be computationally feasible so long as there are only about one thousand
variables.!” Thus, with N ~ 250, a direct approach based on method of moments is feasible
so long as J < 5. This will turn out to be the case in the data used, and would also likely
be the case for many other datasets of interest.

The above assumed that J was known, but this is of course not the case. A heuristic
technique from the clustering literature will again be applied to deal with this problem.
Tibshirani, Walther, and Hastie [2001] propose the “gap statistic” as a means of determining
the number of clusters to use with a clustering algorithm. Following Mohajer, Englmeier,

and Schmid [2010], this can be expressed as

Gap(k) = E*[Wi] = W

16The identities of the groups are never identified: the predicted elements of the covariance matrix are
identical if &;; and &;; are interchanged for all districts. However, labeling groups becomes possible employ-
ing very basic additional information. For instance, our group 1 is obviously the Taliban and any activity in
the Uzbek areas could be possibly associated with the Islamic Movement of Uzbekistan insurgent faction.

17A very different approach would be to attempt to use the fact that the set of completely positive matrices
is convex. Unfortunately, there is no barrier function available for optimization over this set. Vasiloglou,
Gray, and Anderson [2009] present some options for various relaxation-based approaches. The “brute force”
approach used in this paper, however, appears to yield much better results for the type of data considered:
relaxations would presumably perform better if the data were of much higher dimension.
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Here W, is the variation that is not explained by the k clusters: for this paper, this is taken
to be the squared residuals in Equation 5. E* is the expectation taken with respect to a
reference distribution chosen to correspond to no cluster structure. This is generated by
randomly rearranging the time indices of the observations for each district. As this is done
independently for each district, the result is data with a covariance matrix that is solely the
result of random variation.

The estimated number of clusters .J is selected to be the smallest k such that
Gap(k) > Gap(k + 1) — sg41

where s;1 is the estimated standard error for the objective function, obtained by randomly
drawing a large number of covariance matrices from the reference distribution, and then
calculating Wy, for each of these matrices. Consistency of this estimator is discussed in

Appendix B.

2.3 Robustness: potentially changing district environments

Both the spectral clustering approach and the non-negative matrix factorization tech-
nique just described assumes that the covariance in attacks by group members across dis-
tricts remains the same even across long periods of time. In the observed data, however,
it could be the case that in earlier years certain districts are the focus of many attacks,
while in later years activity shifts to other districts. These sorts of long term changes can
be accounted for by considering only the covariance in attacks across districts within shorter
windows.

Let I g, be calculated the same as 'y from Equation 1, but using only daily attack data
from month m. As the number of days of data used to calculate I'p,, does not increase
asymptotically for any given month m, estimation based on a single I'y,,, would be inconsis-
tent. Aggregrating across months, however, results in a consistent estimator that is robust
to changes in attack probabilities between districts at the month level.

Specifically, assume that the probability of an attack in district ¢ in month m, either from
unorganized militants or an organized group, now changes with (;,,. That is, the probability

of an attack from a unorganized militant is now (;,,n, and the probability of an attack from

15



member of organized group j is now ;,€;:. Let D(-) indicate a diagonal matrix with the given

m

could be summed to create Ty = D(3. Cu)TamD(Y., Cn). T could then be used to

entries on the diagonal. If ¢ were known the standardized matrix R — D(CL)FHmD(CLm)

estimate «. In reality, ¢ is unobserved; however, dividing by the observed number of attacks
creates a feasible estimators, with « identified up to scale. This approach can be used with
both with estimation based on spectral clustering, and that based on non-negative matrix

factorization.

3 Data

Afghanistan is covered by the Empirical Studies of Conflict Project (ESOC), which “iden-
tifies, compiles, and analyzes micro-level conflict data and information on insurgency, civil
war, and other sources of politically motivated violence worldwide.”'® The ESOC data cur-
rently reports a location, date, and type for violent incidents from the beginning of 2003 to
the end 2009. This data is based on the Worldwide Incidents Tracking System (WITS), a
U.S. government military database!®. The following two examples illustrate the typical form

of incident descriptions:

On 27 March 2005, in Laghman, Afghanistan, assailants fired rockets at the Gov-
ernor House, killing four Afghan soldiers and causing minor damage. The Tal-

tban claimed responsibility for the attack.

On 19 February 2006, in Nangarhar, Afghanistan, a suicide bomber detonated
an improvised explosive device (IED) prematurely near a road used by govern-
ment and military personnel, causing no injuries or damage. No group claimed

responsibility.

The violent incidents cataloged in the ESOC dataset are episodes of violence initiated by
insurgents, or acts of random violence. The data does not include violence directly connected
to a military counterinsurgency operation, such as for instance a U.S. military attack on a

Taliban safe house.

18See https://esoc.princeton.edu/
197 Worldwide Incidents Tracking System.” National Counterterrorism Center (wits.nctc.gov).
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According to the data, there are some days where as many as 64 different districts are
affected by simultaneous insurgent attacks. However, there are also 123 districts with no
reported incidents over the entire 2004-2009 time period. It is apparent to even the most
casual observer that attacks are concentrated in certain areas of the country.

The location reported for an attack in ESOC is given as latitude and longitude coordi-
nates. This would seem to suggest that attacks could be analyzed as some sort of spatial
point process. Closer inspection, however, reveals that the latitude and longitude coordi-
nates reported are not those of the actual location of the attack, but rather the coordinates
of a prominent nearby geographic feature. Sometimes this is a city or village, but for the vast
majority of incidents the location given is that of the centroid of the district in which the
incident occurred. In Afghanistan, the “district” is the lowest-level political unit. A few dis-
tricts have been split in recent years: this paper uses 2005 administrative boundaries, which
specify 398 districts. The ESOC data effectively provides panel data at the district-day level,
with N = 398 and T" = 2082.

Additional geographic information reported in ESOC includes the location of roads,
rivers, and settlements. We aggregate this data to the district level in order to use it
with the district-level attack data. ESOC does not report information on the distribution of
ethnicities in Afghanistan. For geographic data on ethnicities, we thus use the Soviet Atlas
Narodov Mira data. The version used is the “Geo-referencing of ethnic groups” (GREG)
dataset of the Swiss Federal Institute of Technology Zurich®.

In Figure 1 we report the ethnic distribution map by district and in Figures 3 and 4
the incident distribution map by district for the years 2004-2007 and 2008-2009 respectively
(in per capita terms). Table 1 includes for ease of reference a summary of the US Afghan
counterinsurgency timelined produced by the Council of Foreign Relations. Table 2 includes
summary statistics for total incidents, ethnic fragmentation, roads, rivers, and settlements
by district. Figure 2 shows the attacks observed in the data, by district in per capita terms.
Without further analysis, it is clear that the data confirm two well known qualitative features
regarding insurgent attacks: they are more likely to occur in Pashtun areas, and there is a

particular concentration on the ring road highway running south from the capital, Kabul.

20http://www.icr.ethz.ch/data/other/greg
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An analysis by the methods developed above, however, reveals some additional patterns that

are not immediately obvious from an inspection of the raw data.

4 Results

Figure 5 shows the eigenvalues obtained by using the spectral clustering approach de-
scribed above on the Afghan data. There is only one zero eigenvalue, with the following
eigenvalues being substantially larger. Thus, the appropriate estimate for the number of
organized insurgent groups is J =1 Figure 6 shows the eigengaps for these eigenvalues.
The first eigengap is the largest by a substantial margin, suggesting that small random per-
turbations would not change the estimated number of groups. Figure 7 shows the presence
of organized group members based on the approximation given in Equation 4. The units
reported in the figure are normalized so that 0 corresponds to no attacks being attributable
to organized group members, and 1 corresponds (approximately) to all attacks being at-
tributable to members of an organized group.?! Table 3 shows regression results based on
the approximation given in Equation 4. Most of these are unsurprising: ethnicities other
than Pashtun (the omitted ethnicity) are generally less likely to be associated with organized
group activity, while there is more group activity in districts with more roads.

As in Figure 2, which shows raw attacks, Figure 7 shows that organized attacks are
concentrated in Pashtun areas, and also near the main highway passing through Kabul and
other cities. A feature that is apparent in Figure 7, however, that does not show up clearly in
the raw attack data of Figure 2 is that there appears to be a substantial organized insurgency
operating near the highway north of Kabul, as well as the highway running south from it.??
This area is not as heavily populated by Pashtuns, and perhaps because of this the number
of total attacks is not as high. An investigation of the attack data via spectral clustering,
however, reveals that the attacks that did occur appear to exhibit substantial coordination.

The major results from analysis via spectral clustering are thus that insurgent attacks in

Afghanistan are best represented as the work of a single organized group (plus “unorganized”

21Values less than 0 or greater than 1 can be obtained because of finite sample variation. A small number
of these occur in Figure 7, and are reflected in the legend.

22Table 5 shows regression results based on total attack data, using the same specifications as Table 3.
The results here are similar.
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local militants), rather than multiple groups, and that this insurgent group is active both
to the north of Kabul as well as to the south. The eigengap analysis suggests that the
conclusion regarding the number of groups would not change under small perturbations of
the data; however, this check is heuristic in nature. An analysis is thus performed using
technique based on non-negative matrix factorization outlined in Sections 3.2 and 3.3, as
this method involves bootstrap simulations.

Table 12 shows the results of the Tibshirani, Walther and Hastie (2001) gap statistic pro-
cedure, using the estimation approach based on non-negative matrix factorization. Columns
I and IIT use exactly the data used for the analysis by spectral clustering, where districts
with fewer than 3 attacks were excluded. Columns II and IV use data from all districts, but
with a penalty function that weights the penalty for each ~;; entry proportional to the total
number of attacks in districts ¢ and /. This weighting is ad hoc, but accounts for the fact
that estimates of insurgent prevalence for districts with very few attacks will be very noisy,
because little information is available.?® The “Pakistan” column replaces the Afghan attack
data with roughly comparable data from Pakistan: the results here differ markedly from
those presented in the first four columns. Whereas adding a group structure to the attacks
is able to explain a statistically significant fraction of the Afghan attacks, as compared to
random attacks, the attacks in Pakistan do not appear to match this sort of structure.

Figure 8 shows the estimated prevalence of organized insurgents. As both the numerator
and the denominator here are subject to random variation, there is substantial noise due to
finite sample variation; however, the general pattern appears to agree with the qualitative
description of insurgent activity just given for the spectral clustering method, and shown in
Figure 7. The estimates from the non-negative matrix factorization method appear to make
it slightly clearly that the majority of organized insurgent activity is on the ring highway
passing through Kabul, and that this activity extends to the north as well as the south of
Kabul.

Estimates of the prevalence of the organized group can also be produced using the method

in Section 3.3. As the estimates in this case effectively control for variation across months,

23 As is often the case, weighting does not affect the consistency of the estimator. Here weights are used
in order to ensure reasonable performance with the sample actually observed.
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estimates appear slightly noisier.?* Figure 9 shows these estimates. The tendency towards
organized insurgent activity along the main highway can still be seen, although it is not as
clear as in Figures 7 and 8. The main benefit of using the method outlined in Section 3.3
appeared in Table 5: it confirms that the claim that the data is best represented by only
one organized insurgent group is not due to long-term trends in attacks that are the same
across districts, but is indeed due to coordinated attacks at a day-by-day frequency.

One potential problem with the above analysis is that the observed results are due to
an external event that causes widespread protests and many attacks. In the context of the
model, this would appear to suggest a set of coordinated attacks, when in reality the attacks
were by independent actors who were merely responding to the same event. The most
obvious case of this in the Afghan data is the 2009 elections, which led to many attacks on
and around election day. While there is substantial evidence that many of these attacks were
in fact coordinated by the Taliban, it would be worrisome if the results presented thus far
changed when the attacks around the time of the 2009 elections were excluded. A reanalysis
of the data stopping at July 2009 (before the August 2009 elections) however, gives the same
results for the gap statistic analysis shown in Table 5: the observed pattern of attacks is best
represented by one coordinated group. Estimates of the prevalence of organized insurgents

are qualitatively similar to Figures 7 and 8.

4.1 Changes in group structure across time

The econometric model outlined in Section 3 assumes that the extent and prevalence of
the organized insurgent group remains constant across time. A formal model that allows
for this structure to change over time appears challenging to develop. An informal analysis
of potential changes can be conducted, however, by dividing the data into two. Create an
“early” data set, including only attacks in 2004-2007, and a “late” data set, including only
attacks in 2008-2009. Estimates of the prevalence of organized insurgents from the ealier
data can then be compared to estimates from the later data, yielding a description of how

the location of insurgent groups has changed over time.?> The average number of attacks

24Calculation of correct standard errors for these estimates appears challenging.
25The informal nature of this analysis is due to the fact that the cut point of January 1, 2008, was chosen
based on qualitative information: the econometric model is not one of structural breaks.
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per day is substantially higher in the later period compared to the earlier one: Figure 10
shows the total number of attacks estimated to be due to organized insurgent groups in the
earlier period, while Figure 11 shows this for the later period. The colors of the figures are
aligned so that the same colour indicates the same number of attacks per capita per year,
although the “early” and “late” data have a different number of months.

An interesting feature of these figures is that attacks in the later period mainly occur in
districts in which there were attacks in the earlier period, or districts adjoining districts where
there were attacks. For example, there were no attacks in the central part of Afghanistan, or
much of the northeast, and these areas similarly do not have any attacks in the later period.
Figure 12 shows in blue the districts where the indicator variable is coded to be zero. All
but one of these are not estimated to have any organized attacks due to insurgent group
members in the later period: this can be seen by comparing Figure 11 with Figure 12.

Table 8 shows that this qualitative pattern is statistically significant. The basic specifi-

cation used here is

ATTACKS_LATE; = 8y + 51 ATTACKS_EARLY;
+5,1(ATTACKS_EARLY_ADJACENT; = 0) + ¢;

where ATTACKS_LATE is the number of attacks estimated to be due to organized insur-
gents in the later period, and ATTACKS_EARLY this number for the earlier period. AT-
TACKS_EARLY_ADJACENT is the average number of attacks in geographically adjacent
districts. This last variable is used only as indicator variable: are there an estimated positive
number of attacks attributed to organized groups in adjacent districts??® Columns I-IIT of
Table 8 show that districts where there was no insurgent group activity in the early period
are less likely to experience insurgent group activity in the later period, and that this result
is robust to a variety of controls, including province fixed effects.

Based on the econometric model presented in Section 3, there should never be a negative
number of attacks attributed to organized group members. Columns IV-VI present the same
analysis using a Poisson model, in order to take this into account. An additional advantage

of the Poisson model is that districts with few attacks are (correctly) treated as having

26This is because there is a long-standing problem in the analysis of spatial data regarding how to use this
type of “adjacent observations” data, and there does not appear to be a satisfactory solutin in this case.
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higher variance.?” The results in Columns IV-VI confirm that there is very little organized
insurgent activity in the late period in districts that did not border a district with such
activity in the early period. The large coefficient on the ATTACKS_EARLY_ADJACENT
indicator variable is due to the fact that the data “almost” exhibits complete separation: if
there were zero districts rather than one that saw organized insurgent activity in the late
period without any adjacent activity in the early period, the estimated coefficient here would
be negative infinity, and it would not be possible to calculate standard errors by standard
methods.?®

With respect to the distribution of attacks across districts, Figure 10 shows a lower
frequency of attacks overall, and most districts that do see a high frequency of attacks are
near the main highway to the south and west of Kabul. Figure 11 shows a higher frequency of
attacks, and also shows districts in the north with high frequencies of attacks. One example
of this is the highway north of Kabul, where there are now appear to be a number of districts
with high frequencies of attacks. This claim is difficult to test statistically, because of the
small number of districts in question.

A statistical analysis of changes in the distribution of attacks does reveal some patterns
that are statistically significant. Table 4 shows that areas with non-Pashtun ethnicities
appeared to exhibit relatively greater activitiy in the later period, although this is only

statistically significant in the case of the Uzbeks.?

2"This could also have been obtained using weighted least squares of some sort, but the Poisson model is
natural here, as the underlying attack data is positive integers. The estimated number of attacks attributed
to organized group members are non-integer, but this does not cause a problem for generalized linear models
of the sort used.

28 As an additional test, Table 9 repeats the regressions in Columns I-VI of Table 8 without the AT-
TACKS_EARLY variable. The estimated coefficient on the ATTACKS_EARLY_ADJACENT indicator vari-
able is still negative (and large in the case of Columns IV-VI), although no longer statistically significant
when province fixed effects are included.

29Table 7 shows similar results using a specification where each entry in the covariance matrix is treated as
its own observation, rather than summing across rows: some additional coefficients are statistically significant
with this specification. Table 6 shows that roughly similar results are obtained using data based on total
attacks.
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5 Conclusions

This paper focuses on the empirical analysis of insurgency, with an application to post-
2001 Afghanistan. Often the only type of data available concerning the amount and geo-
graphical diffusion of insurgent activity comes from incident-level data, that is instances of
attacks led by either insurgency or counterinsurgency participants (often deadly and highly
damaging). However limited such information might be, recent important advances in the
analysis of the economics of conflict and reconstruction in war zones have been possible
thanks to this data (see Berman, Shapiro, and Felter, 2011 for an example).

This paper shows how incident-level data contains useful information on the coalition
structure and the geographic span of influence of insurgent groups and how this can be
assessed systematically. We present a class of econometric methods useful for detecting
unobserved insurgent coalition structures employing the “excess covariance” in terms of
violent incident co-occurrences across regions and over time. Intuitively, if incidents in
districts ¢ and ¢’ tend to co-occur simultaneously more than what would be predicted by
random chance, then most likely areas ¢ and ¢’ share an insurgent movement capable of
spatial coordination across ¢ and /. The paper also carries out an economic analysis of the
spread and frequency of attacks. Specific historical and topological constraints like ethnic
composition of the local population, terrain ruggedness, local resources, or ease of access
to safe havens (e.g. vicinity to the Pakistani border in the South) explain a considerable
amount of insurgent diffusion and its dynamics over time.

Progress in understanding insurgency appears key in furthering our knowledge of the
determinants and consequences of political violence in developing countries. In this sense,
much of the analysis in this paper is necessarily context-dependent, but informative nonethe-
less for regional stabilization and local development goals (Drozdova, 2012). On the other

hand, our methodological contributions have a more general appeal.
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Figure 1: Ethnicities of Afghanistan

Figure 2: Total attacks per capita

Attacks per million people per year

[Jo-14
[]14-35
[ 35-89
Il 89-185
Il 185 - 2368

24



Figure 3: Attacks per capita 2004-2007
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Figure 4: Attacks per capita 2008-2009
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Figure 5: (Sorted) Eigenvalues for Spectral Clustering
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Figure 7: Organized group members: Spectral clustering (Equation 3)
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Figure 9: Organized group members: NNMF method (Section 3.3)
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Figure 10: Organized group members: Spectral clustering (2004-2007)
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Figure 11: Organized group members: Spectral clustering (2008-2009)
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Figure 12: (Estimated) attacks by organized group members (2004-2007,
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Table 1: Afghanistan timeline 2001-2011

18-Sep-01

7-Oct-01
Nov-01
Dec-01
5-Dec-01
9-Dec-01
17-Apr-02

1-May-03
8-Aug-03
Jan-04
9-Oct-04
29-Oct-04
18-Sep-05

Jul-06
Nov-06

22-Aug-08
17-Feb-09
27-Mar-09
11-May-09
Jul-09
Nov-09
1-Dec-09
23-Jun-10
1-May-11
Jun-11

7-Oct-11

President George W. Bush signs into law a joint resolution authorizing the use of force against those
responsible for attacking the United States on 9/11.

The U.S. military, with British support, begins a bombing campaign against Taliban

The Taliban regime unravels rapidly after its loss at Mazar-e-Sharif on November 9th

Osama bin Laden escapes from Tora Bora

Hamid Karzai is installed as interim administration head after the Bonn Agreement

The Taliban surrender Kandahar, their regime collapses.

U.S. Congress appropriates over $38 billion in humanitarian and reconstruction assistance to
Afghanistan from 2001 to 2009.

U.S. Secretary of Defense Donald Rumsfeld declares an end to "major combat.”

NATO assumes control of international security forces (ISAF) in Afghanistan

Afghan Constitution is approved.

Hamid Karzai is popularly elected as president.

Osama bin Laden releases a videotaped message three weeks after the country’s presidential election.
Legislative elections in Afghanistan for the Wolesi Jirga (Council of People) and the Meshrano Jirga
(Council of Elders)

Violence increases across the country, including suicide attacks.

U.S. Secretary of Defense Robert Gates criticizes NATO countries in late 2007 for not sending more
soldiers.

Afghan civilian casualties mount. Gen. Stanley A. McChrystal orders an overhaul of U.S. air strike
procedures.

New U.S. president Barack Obama announces plans to send seventeen thousand more troops to
Afghanistan. Reinforcements focus on countering a "resurgent” Taliban and stemming the flow of
foreign fighters over the Afghan-Pakistan border in the south.

New American strategy focused on disrupting Taliban safe havens in Pakistan

Secretary of Defense Robert Gates replaces the top U.S. commander in Afghanistan, Gen. David
D. McKiernan, with counterinsurgency and special operations guru Gen. Stanley A. McChrystal.
U.S. Marines launch a major offensive in southern Afghanistan (Helmand Province), representing
a major test for the U.S. military’s new counterinsurgency strategy.

Hamid Karzai is popularly re-elected as president.

President Obama announces a major escalation of the U.S. mission, an Afghan surge.

Gen. Stanley McChrystal is relieved of his post as commander of U.S. forces in Afghanistan
Osama bin Laden killed in Pakistan

President Obama outlines a plan to withdraw troops according to NATO plans of complete with-
drawn by 2014

10 years of counterinsurgency war. 1,800 U.S. troop casualties and $444 billion in spending

Source: Council on Foreign Relations
http://www.cfr.org/afghanistan /us-war-afghanistan/p20018
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Table 2: Summary Statistics

Statistic N Mean St. Dev. Min Max
PASHTUN 396 0.516 0.439 0.000 1.000
UZBEK 396 0.123 0.285 0.000 1.000
BALOCH 396 0.015 0.099 0.000 1.000
HAZARA 396 0.097 0.257 0.000 1.000
TAJIK 396 0.219 0.357 0.000 1.000
PAMIR. TAJIK 396 0.013 0.094 0.000 1.000
ORMURI 396 0.005 0.050 0.000 0.731
NURISTANI 396 0.012 0.084 0.000 0.846
POPULATION 398 58.673 150.129 1.841  2,882.164
AREA 398 1.948 2.624 0.032 25.128
LIGHT 398 0.051 0.192 0.000 2.000
LATITUDE 398 34.580 1.724 29.889 38.225
LONGITUDE 398 67.796 2.607 61.156 73.349
ROADS 398 1.063 1.212 0 6
RIVERS 398 0.798 1.687 0.000 13.598

The first eight variables indicate the shares of ethnicities in each district. PASHTUN also includes Pashai,
Tirahi, Afghan Arabs, and Persians. UZBEK also includes Turkmens and Kirghis. BALOCH also includes
Brahui. HAZARA includes Mongols, in addition to Hazaraberberi and Hazaradehizainat. TAJIK also
includes Jamshidis, Taimanis, Firozkohis, Teymurs. ORMURI includes Parachi. There are two districts for
which ethnic information is not available.

POPULATION is in thousands of people. AREA is in thousands of square km. LIGHT is a index of nightime

light emissions. LATITUDE and LONGITUDE are in degrees. ROADS is the number of major roads in the
district. RIVERS is the total length of rivers in the district.

36



Table 3: Dep. variable is sum of off-diagonal entries of cov.

matrix for a given district ¢

I 11 111 IV v VI VI VI
(Intercept) 257° 186" 0.8 -—228° 383 393 187" —0.36
(0.19) (0.75) (0.62) (0.96) (0.12) (0.54) (0.38) (0.83)
UZBEK ~0.56 —0.20 —1.06* —0.08 —1.17" —0.98 —1.57" —0.98
(0.38)  (0.73) (0.39) (0.71) (0.36) (0.55) (0.41) (0.69)
BALOCH ~178 —265 —193 —155 -—224* —280* —2.19* —1.57
(1.49) (1.42) (1.47) (1.34) (0.93) (1.03) (1.07) (1.09)
HAZARA —1.46* —227* —2.14* —244* —0.75 —0.71 —1.17 —0.74
(0.38) (0.54) (0.40) (0.73) (0.61) (0.61) (0.66) (0.65)
TAJIK —0.89* —0.19 —1.33* —0.35 —044 -026 —0.81* —0.26
(0.38) (0.78) (0.37) (0.62) (0.29) (0.81) (0.28) (0.47)
PAMIR.TAJIK 097 3.77* 1.95* 4.49* —0.35" 3.66* 020  4.28
(0.22) (0.81) (0.44) (0.74) (0.13) (0.88) (0.32) (0.61)
ORMURI 1.64 —028 1.05 —1.64* 061 —0.18 024 —155
(0.87) (0.44) (0.62) (0.69) (0.75) (0.28) (0.54) (0.70)
NURISTANI ~ —145 051 —094 091 —3.02* —0.76* —1.85 —0.43
(1.21)  (0.32) (1.37) (2.05) (1.31) (0.19) (1.13) (1.06)
logPOP 0.52*  0.73" 0.43*  0.59*
(0.17)  (0.19) (0.09)  (0.13)
logAREA 0.38*  0.18 0.28*  0.19
(0.13)  (0.16) (0.08) (0.12)
logROADS 0.55*  0.59* 0.43*  0.60*
(0.23)  (0.26) (0.17)  (0.17)
logRIVERS —0.22* —0.13 —0.03 —0.01
(0.09) (0.13) (0.07)  (0.09)
PROV Y %
N 262 262 262 262 262 262 262 262
R? 006 024 018  0.35
adj. R? 004 010 015  0.22
Resid. sd 1.93 1.8 1.82  1.74

Columns I - IV use OLS with dependent variable log transformed
Columns V - VIII use GLM /Poisson allowing for overdispersion
Robust standard errors in parentheses

* indicates significance at p < 0.05
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Table 4: Dep. variable is sum of off-diagonal entries of cov. matrix for a given district ¢

I 11 111 IV v VI VIl VI
(Intercept) —1.08° —0.96* —1.23° —323 063 075 061 —1.69
(0.40) (0.40) (0.50) (0.71) (0.36) (0.35) (0.38) (0.87)
POST 0.31* 009 062 062 058 040° 0.67 0.76
(0.15)  (0.20) (0.79) (0.73) (0.15) (0.17) (0.62) (0.63)
UZBEK —1.44* —2.11* —2.11* —1.05* —1.54* —3.28 —3.34* —2.44"
(0.27) (0.31) (0.30) (0.50) (0.40) (0.65) (0.67) (0.76)
BALOCH ~1.02 —154* —1.05 -093 —190* —245* —2.23* —1.56"
(0.89) (0.63) (0.60) (0.71) (0.84) (0.68) (0.68) (0.77)
HAZARA —1.82F —1.98* —1.92* —1.73* —1.05 —2.20* —2.18* —1.85"
(0.32) (0.36) (0.38) (0.49) (0.60) (0.44) (0.45) (0.50)
TAJIK ~1.39* —1.62* —1.68° —0.66 —0.84* —1.00* —1.03* —0.57
(0.23)  (0.30) (0.29) (0.47) (0.25) (0.38) (0.38) (0.48)
PAMIR.TAJIK 1.92*  2.03* 1.88* 3.60* 034  0.64* 0.60 443"
(0.35) (0.31) (0.38) (0.63) (0.40) (0.29) (0.35) (0.93)
ORMURI —0.12  0.82* 060 -166* 017 -026 -0.36 —2.37"
(1.24) (0.32) (0.36) (0.75) (0.57) (0.20) (0.19) (0.82)
NURISTANI ~053 011 047 149 -235 —1.11 -0.77 051
(0.76) (1.00) (0.95) (1.22) (1.23) (0.97) (0.91) (0.82)
logPOP 0.60*  0.60* 0.70* 0.85° 0.44* 044* 0.45° 0.64"
(0.11) (0.11) (0.13) (0.14) (0.09) (0.08) (0.09) (0.14)
logAREA 025* 025* 0.4 003  026* 026* 024* 0.16
(0.08) (0.08) (0.09) (0.12) (0.07) (0.07) (0.08) (0.12)
logROADS 0.44*  0.44* 046* 055 039 0.39* 058  0.71"
(0.16) (0.16) (0.20) (0.21) (0.15) (0.16) (0.20) (0.23)
logRIVERS —0.08 —0.08 001 010 —003 —0.03 0.00 0.02
(0.07)  (0.07) (0.08) (0.09) (0.07) (0.06) (0.08) (0.10)
POST:UZBEK 1.35*  1.35*  1.35* 2.22F 229" 2.09°
(0.51) (0.52) (0.52) (0.77)  (0.80)  (0.65)
POST:BALOCH 1.04  0.06  0.06 080 043 034
(1.48) (1.48) (1.45) (1.23)  (1.27)  (1.30)
POST:HAZARA 032 019  0.19 153 150  1.55*
(0.60) (0.65) (0.53) (0.80) (0.85) (0.70)
POST:TAJIK 046 057  0.57 026 031  0.36
(0.45) (0.46) (0.41) (0.51)  (0.50) (0.46)
POST:PAMIR.TAJIK —021  0.09 0.9 ~0.59* —0.53 —0.55
(0.23)  (0.60) (0.50) (0.18)  (0.54) (0.52)
POST:ORMURI —1.88 —1.43 —143 064 081  0.99
(1.97) (1.95) (1.52) (0.86) (0.91) (0.77)
POST:NURISTANI ~128 —201 -201 —311 —374 —2386
(1.60) (1.65) (1.48) (2.68) (2.81) (1.99)
POST:logPOP —0.20 —0.20 —0.02 —0.05
(0.21)  (0.20) (0.15)  (0.15)
POST:logAREA 023 023 0.03  0.04
(0.15)  (0.14) (0.13)  (0.14)
POST:logROADS —0.03 —0.03 —0.29 —0.26
(0.33)  (0.29) (0.30)  (0.29)
POST:logRIVERS —0.18 —0.18 —0.04 —0.04
(0.13)  (0.12) (0.12)  (0.12)

N 524 524 524 524 524 524 524 524

Columns I - IV use OLS with dependent variable léjgotransformed. Column IV has province fixed effects.

Columns V - VIIT use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.



Table 5: Dependent variable is total attacks for district ¢

I 11 111 IV v VI VIl VI
(Intercept) 258" 196° 023 —197 337 398 1.02° —0.97
(0.11) (0.82) (0.32) (0.71) (0.14) (0.61) (0.34) (0.77)
UZBEK —1.65* —1.36* —2.04* —1.30" —2.17* —1.74* —2.70* —2.15"
(0.24) (0.47) (0.22) (0.44) (0.29) (0.51) (0.33) (0.50)
BALOCH —2.02¢ —3.03* —1.59* —150* —2.38 —3.20* —1.93* —1.71"
(0.54) (0.43) (0.49) (0.48) (0.44) (0.38) (0.42) (0.41)
HAZARA —171% —172F —221* —1.73* —1.72* —1.31* —2.12* —1.18"
(0.26) (0.38) (0.28) (0.33) (0.43) (0.53) (0.43) (0.51)
TAJIK ~1.12% —0.52 —1.58" —0.66 —0.82* —0.05 —1.22* —0.41
(0.24) (0.55) (0.21) (0.38) (0.40) (0.91) (0.38) (0.49)
PAMIR.TAJIK ~ 0.16  2.01* 0.72* 2.36* —0.64* 245 002 280"
(0.13)  (0.57) (0.28) (0.45) (0.14) (0.93) (0.33) (0.60)
ORMURI 085 061 010 -082 —0.00 036 —0.59* —1.04"
(0.51) (0.54) (0.24) (0.50) (0.28) (0.37) (0.20) (0.36)
NURISTANI ~ —1.27* —1.85* —034 —1.20 —245" —2.82* —0.92 —2.89
(0.50) (0.38) (0.60) (1.08) (0.56) (0.40) (0.52) (1.57)
logPOP 0.60*  0.69" 0.49*  0.63"
(0.08)  (0.10) (0.08)  (0.11)
logAREA 0.19* —0.04 0.24*  0.10
(0.07)  (0.09) (0.07)  (0.08)
1ogROADS 0.37* 057" 0.59*  0.77"
(0.16)  (0.15) (0.15)  (0.14)
logRIVERS —0.03  0.03 —0.03 —0.01
(0.06)  (0.07) (0.08)  (0.07)
PROV Y Y
N 262 262 262 262 262 262 262 262

Columns I - IV use OLS with dependent variable log transformed

Columns V - VIII use GLM /Poisson allowing for overdispersion

Robust standard errors in parentheses

*

indicates significance at p < 0.05

39



Table 6: Dependent variable is total attacks in district ¢

I 11 111 IV v VI VIl VI
(Intercept) 067 026 —009 -182° 1.02° 045 031 —1.77
(0.28) (0.22) (0.28) (0.44) (0.34) (0.28) (0.37) (0.66)
UZBEK —1.74* —1.85* —1.85* —1.24* —2.70* —3.27° —3.23* —2.64"
(0.18) (0.16) (0.17) (0.29) (0.33) (0.43) (0.44) (0.45)
BALOCH ~1.25* —1.07 -0.88 —0.83 —193* —1.50* —1.36 —1.08
(0.34)  (0.60) (0.57) (0.59) (0.42) (0.72) (0.73) (0.72)
HAZARA —1.84* —1.58* —1.58° —1.13* —2.12* —2.15* —2.11* —1.18"
(0.23)  (0.23) (0.23) (0.23) (0.43) (0.39) (0.40) (0.37)
TAJIK —1.34% —1.42* —145* —0.70 —1.22* —1.40* —1.40* —0.61
(0.18)  (0.19) (0.19) (0.26) (0.38) (0.44) (0.45) (0.39)
PAMIR. TAJIK 0.54*  0.69* 0.75* 1.84* 002 017 021  3.04"
(0.24) (0.18) (0.25) (0.39) (0.33) (0.27) (0.37) (0.60)
ORMURI 005 —0.19 —029 -1.04* —059* —1.00* —1.01* —1.47"
(0.22) (0.20) (0.23) (0.35) (0.20) (0.20) (0.23) (0.30)
NURISTANI —0.31 —0.62 —045 —138 —092 -127 -1.14 -3.16"
(0.46)  (0.50) (0.52) (0.66) (0.52) (0.67) (0.68) (1.21)
logPOP 0.52* 047" 0.59* 0.67° 049* 049* 0.53*  0.68"
(0.07) (0.06) (0.07) (0.07) (0.08) (0.06) (0.09) (0.11)
logAREA 0.16* 0.15* 0.12* —0.04  0.24* 0.24* 0.22° 0.08
(0.06) (0.04) (0.06) (0.07) (0.07) (0.05) (0.08) (0.09)
1ogROADS 0.36*  0.36* 0.27* 042* 059 059 058  0.76"
(0.13)  (0.09) (0.13) (0.11) (0.15) (0.12) (0.17) (0.15)
logRIVERS —0.02 —0.02 00l 007 —003 —003 —0.02 —0.00
(0.05) (0.04) (0.06) (0.06) (0.08) (0.06) (0.09) (0.06)
POST —0.12  0.60  0.60 —025 008 021
(0.13)  (0.41)  (0.40) (0.16)  (0.49) (0.41)
POST:UZBEK 0.57*  0.56*  0.56" 1.05* 099  0.90*
(0.22) (0.24) (0.23) (0.52) (0.53) (0.34)
POST:BALOCH —0.35 —0.74 —0.74 ~1.39 —1.69 —187
(0.83) (0.80) (0.82) (1.39)  (1.39) (1.50)
POST:HAZARA —0.12 —0.13 —0.13 0.08 —0.01  0.01
(0.29) (0.31) (0.23) (0.64) (0.64) (0.58)
POST:TAJIK 040 046  0.46" 039 037  0.40
(0.26) (0.26) (0.22) (0.56) (0.56) (0.32)
POST:PAMIR.TAJIK —0.47* —0.59 —0.59" —0.41* —0.51 —0.57
(0.13)  (0.34) (0.29) (0.16)  (0.49) (0.34)
POST:ORMURI 0.53*  0.74*  0.74* 0.79*  0.83*  0.84*
(0.24)  (0.32) (0.23) (0.25)  (0.30) (0.19)
POST:NURISTANI 069 035  0.35 072 042 051
(0.58) (0.62) (0.59) (0.77)  (0.85)  (1.09)
POST:logPOP —0.24* —0.24* —0.09 —0.11
(0.11)  (0.11) (0.12)  (0.10)
POST:logAREA 0.05  0.05 0.05  0.05
(0.08)  (0.07) (0.10)  (0.09)
POST:logROADS 0.17  0.17 0.01 0.1
(0.18)  (0.15) (0.23)  (0.19)
POST:logRIVERS —0.06 —0.06 —0.02 —0.01
(0.07)  (0.06) (0.12)  (0.07)

N 262 524 524 524 262 524 524 524

Columns I - IV use OLS with dependent variable lélgutransformed. Column IV has province fixed effects.

Columns V - VIIT use GLM/Poisson allowing for overdispersion. Column VIII has province fixed effects.

Robust standard errors in parentheses



Table 7: Dependent variable is off diagonal covariance matrix entry ¢ ¢/

I II II1 1A%
POST 0.234* 0.905* 0.909* 0.491
(0.032)  (0.173)  (0.173) (0.467)
UZBEK —2.431*  —2.433* —1.472* —1.703*
(0.229)  (0.220)  (0.334) (0.352)
BALOCH —0.936 —0.713 —0.421 —0.756
(0.773) (0.775) (0.701) (0.718)
HAZARA —2.490* —2.476* —-2.310* —1.741*
(0.269)  (0.269)  (0.325) (0.331)
TAJIK —1.454*  —1.525* —0.538* —0.604*
(0.166)  (0.167)  (0.238) (0.244)
PAMIR.TAJIK 1.254 1.237 3.627* 2.548*
(0.832)  (0.834)  (0.909) (0.932)
ORMURI —0.182 —0.278 —1.866* —1.058
(0.739)  (0.739)  (0.746) (0.754)
NURISTANI —0.104 0.114 —0.404 —1.065
(0.719) (0.719) (0.970) (0.992)
logPOP 0.479* 0.530* 0.638* 0.633*
(0.081)  (0.082)  (0.080) (0.082)
logAREA 0.194* 0.167* —0.004 0.019
(0.052)  (0.053)  (0.064) (0.066)
logROADS 0.368* 0.428* 0.540* 0.518*
(0.111)  (0.113)  (0.106) (0.107)
logRIVERS —0.079 —0.047 0.018 0.072
(0.049)  (0.051)  (0.056) (0.057)
POST:UZBEK 1.364* 1.364* 1.365* 1.637*
(0.122)  (0.123)  (0.123) (0.190)
POST:BALOCH —0.180 —0.529 —0.530 0.027
(0.475)  (0.479)  (0.479) (0.501)
POST:HAZARA 1.020* 0.992* 0.994* 0.252
(0.117)  (0.117)  (0.118) (0.167)
POST:TAJIK 0.382* 0.483* 0.485* 0.561*
(0.057) (0.060) (0.060) (0.098)
POST:PAMIR.TAJIK —0.487 —0.471 —0.470 1.606*
(0.256)  (0.265)  (0.265) (0.761)
POST:ORMURI 0.500* 0.650* 0.651* —0.533*
(0.197)  (0.199)  (0.199) (0.250)
POST:NURISTANI 0.076 —0.265 —0.266 0.858*
(0.302)  (0.305)  (0.305) (0.433)
POST:logPOP —0.081* —0.082* —0.071%
(0.022)  (0.022) (0.032)
POST:logAREA 0.042* 0.042* 0.001
(0.018) (0.018) (0.027)
POST:logROADS —0.095* —0.095* —0.053
(0.037)  (0.037) (0.042)
POST:logRIVERS —0.047*  —0.047* —0.120*
(0.018)  (0.018) (0.025)
Constant —6.889*  —7.303* —11.288* —11.044*
(0.590)  (0.601)  (1.055) (1.085)
N 68,382 68,382 41 68,382 68,382

GLMM/Poisson allowing for overdispersion, with random effects at district level

Overdispersion modelled via random effects at observation level. Column IV has province fixed effects.



Table 8: Estimated Organized Attacks, 2008-2009

I I 11 IV \Y% VI
(Intercept) —1.31* —-1.23 —-11.78 0.48" —4.11 —8.59
(0.09) (2.71) (12.30) (0.14) (4.98)  (21.03)
I(adj.attacks.pc == 0)TRUE  —0.95* —0.69* —0.49* —4.71* —4.39* —3.67*
(0.10) (0.12)  (0.18) (1.02) (1.04) (1.11)
mod.pre 0.78  0.68* 0.69*  0.34*  0.28* 0.34*
(0.11) (0.11)  (0.11) (0.07) (0.08) (0.13)
log(population08) 027 0.24 0.54* 0.61*
(0.10)  (0.13) 0.17)  (0.23)
log(areadeg) 0.08 0.06 0.22 0.10
(0.07)  (0.10) 0.14)  (0.17)
mean_2000 —-0.71  —-0.63" —1.94 —1.04
(0.27)  (0.29) (1.18) (1.30)
centroidlat —0.17* 0.01 —0.18 —0.27
(0.05)  (0.17) (0.09)  (0.41)
centroidlon 0.05 0.10 0.08 0.14
(0.03)  (0.17) (0.05)  (0.29)
Provice FE N N Y N N Y
N 398 398 398 398 398 398
R? 0.36 0.39 0.46
adj. R? 0.35 0.38 0.40
Resid. sd 1.41 1.38 1.36

Columns I-11T use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable

ATTACKS is (estimated) number of organized attacks in Jan 2008 - July 2009.

mod.pre is (estimated) number of organized attacks in 2004-2007.

adj.attacks is (estimated) number of organized attacks per capita in adjacent districts in 2004-2007.
Robust standard errors in parentheses

*

indicates significance at p < 0.05
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Table 9: Estimated Organized Attacks, 2008-2009 (no attacks in 2004-2007)

I 11 IT1 IAY \Y% VI
(Intercept) —1.93* 2,60 20.39 —0.93* 14.67 106.11*
(0.07) (2.38) (12.69) (0.43) (7.82)  (42.20)
I(adj.attacks.pc == 0)TRUE —0.34* —0.15 —0.13 —3.29* —2.61* —1.78
(0.08) (0.08) (0.12) (1.10) (1.15) (1.26)
log(population08) 0.10 0.02 0.62 0.02
(0.08)  (0.09) (0.38) (0.52)
log(areadeg) 0.01 0.02 —0.32 0.44
(0.05)  (0.06) (0.40) (0.58)
mean_2000 —-0.29* —0.12 —7.43 —1.52
(0.13)  (0.15) (7.62) (3.00)
centroidlat —0.10* —0.10 —0.46* —1.50
(0.04)  (0.09) (0.19) (0.82)
centroidlon —0.03 —0.28 —0.10 —0.81
(0.03)  (0.17) (0.11) (0.51)
Provice FE N N Y N N Y
N 235 235 235 235 235 235
R? 0.03 0.09 0.50
adj. R? 0.02 006 0.0
Resid. sd 0.87 0.85 0.69

Sample is districts with zero (estimated) number of organized attacks in 2004-2007.
Columns I-ITT use OLS with log(ATTACKS+0.1) as dependent variable

Columns IV-VI use Poisson regression with ATTACKS as dependent variable
ATTACKS is (estimated) number of organized attacks in Jan 2008 - July 2009.

adj.attacks is (estimated) number of organized attacks per capita in adjacent districts in 2004-2007.

Robust standard errors in parentheses

*

indicates significance at p < 0.05
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Table 10: Non-negative matrix factorization (“full shuffle” reference distribution)

Afghanistan Pakistan
I IT 111 I\Y I I1 II1 IV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1
actual data - 1 1 1 1 1 1 1 1
gap A 0 0 0 0
1 grp rnd shuffled data (mean) 0.883 0.950 0.962 0.972 0.682 0918 0.947 0.972
actual data - 0.600 0.721 0.921 0.883 0.773 0.655 0.903 0.889
gap B 0284 0.229 0.042 0.089 -0.091 0.263 0.043 0.084
gap statistic (B minus A) 0.284 0.229 0.042 0.089 -0.091 0.263 0.043 0.084
rnd shuffled data (std. dev.) 0.055 0.018 0.011 0.008 0.133 0.040 0.008 0.008
2 grps rnd shuffled data (mean) 0.820 0.913 0.937 0.951 0.537 0.861 0.903 0.951
actual data - 0.534 0.668 0.884 0.863 0.631 0.610 0.845 0.829
gap C 0.286 0.245 0.053 0.088 -0.094 0.251 0.058 0.122
gap statistic (C minus B) 0.002 0.016 0.011 -0.001 -0.003 -0.012 0.015 0.038
rnd shuffled data (std. dev.) 0.045 0.023 0.010 0.011 0.130 0.049 0.012 0.011
3 grps rnd shuffled data (mean) 0.787 0.887 0.910 0.935 0433 0.817 0.864 0.935
actual data - 0493 0.633 0.858 0.842 0.501 0.580 0.785 0.783
gap D 0.294 0.254 0.052 0.093 -0.068 0.237 0.079 0.152
gap statistic (D minus C) 0.009 0.009 -0.001 0.005 0.026 -0.015 0.021 0.030
rnd shuffled data (std. dev.) 0.070 0.031 0.012 0.012 0.126 0.053 0.015 0.012
4 grps rnd shuffled data (mean) 0.845 0.904 0.921 0.921 0.366 0.780 0.828 0.921
actual data - 0458 0.603 0.836 0.825 0419 0.543 0.750 0.750
gap E 0.387 0.301 0.085 0.096 -0.053 0.237 0.078 0.172
gap statistic (E minus D) 0.093 0.047 0.033 0.003 0.015 0.001 -0.001 0.019
rnd shuffled data (std. dev.) 0.073 0.038 0.032 0.013 0.114 0.055 0.016 0.013
5 grps rnd shuffled data (mean) 0.880 0918 0.956 0.908 0.315 0.749 0.796 0.908
actual data - 0427 0576 0.816 0.809 0.352 0.514 0.721 0.738
gap F 0453 0.343 0.140 0.099 -0.037 0.235 0.076  0.170
gap statistic (F minus E) 0.066 0.042 0.0564 0.003 0.016 -0.002 -0.002 -0.002
rnd shuffled data (std. dev.) 0.098 0.042 0.028 0.015 0.103 0.055 0.017 0.015

Columns I-II use the model in Section 2.1; ITI-IV use the model from Section 2.2.
Columns I and III consider only districts with more than three attacks.
Columns IT and IV use all districts, but weight districts by the number of attacks.
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Table 11: Non-negative matrix factorization (“monthly shuffle” reference distribution)

Afghanistan Pakistan
I I1 111 I\Y I I I1I vV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1
actual data - 1 1 1 1 1 1 1
gap A 0 0 0 0
1 grp  rnd shuffled data (mean) 0.880 0.939 0.958 0.968 0.736 0.667 0.943 0.956
actual data - 0.600 0.722 0921 0.883 0.773 0.655 0.903 0.889
gap B 0281 0.217 0.037 0.085 -0.037 0.012 0.039 0.067
gap statistic (B minus A) 0.281 0.217 0.037 0.085 -0.037 0.012 0.039 0.067
rnd shuffled data (std. dev.) 0.049 0.015 0.014 0.013 0.109 0.022 0.010 0.009
2 grps rnd shuffled data (mean) 0.800 0.886 0.928 0.944 0.597 0.611 0.897 0.925
actual data - 0534 0.669 0.884 0.863 0.631 0.603 0.845 0.829
gap C 0266 0.217 0.044 0.081 -0.034 0.008 0.052 0.096
gap statistic (C minus B) -0.014 -0.001  0.007 -0.004 0.002 -0.004 0.013 0.029
rnd shuffled data (std. dev.) 0.047 0.026 0.018 0.015 0.122 0.022 0.014 0.012
3 grps rnd shuffled data (mean) 0.732 0854 0905 0928 0.504 0.579 0.856 0.901
actual data - 0493 0.634 0.858 0.842 0.501 0.572 0.785 0.782
gap D 0239 0220 0.046 0.086 0.003 0.006 0.071 0.120
gap statistic (D minus C) -0.028 0.003 0.003 0.005 0.038 -0.001 0.019 0.024
rnd shuffled data (std. dev.) 0.065 0.030 0.018 0.015 0.120 0.024 0.017 0.014
4 grps rnd shuffled data (mean) 0.680 0.813 0.884 0.917 0434 0.551 0.820 0.881
actual data - 0458 0.604 0.836 0.825 0.419 0.540 0.750 0.761
gap E 0222 0209 0.048 0.091 0.015 0.011 0.070 0.120
gap statistic (E minus D) -0.016 -0.011  0.002 0.005 0.012 0.004 -0.002 0.000
rnd shuffled data (std. dev.) 0.051 0.032 0.0181 0.013 0.112 0.024 0.019 0.015
5 grps rnd shuffled data (mean) 0.673 0.794 0864 0.901 0379 0.529 0.786 0.861
actual data - 0427 0577 0816 0809 0.353 0.519 0.720 0.733
gap F 0246 0217 0.048 0.091 0.026 0.010 0.066 0.129
gap statistic (F minus E) 0.024 0.009  0.000 0.000 0.011 -0.001 -0.003 0.009
rnd shuffled data (std. dev.) 0.096 0.033 0.018 0.015 0.104 0.024 0.020 0.017

Columns I-II use the model in Section 2.1; ITI-IV use the model from Section 2.2.
Columns I and III consider only districts with more than three attacks.
Columns IT and IV use all districts, but weight districts by the number of attacks.
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Table 12: Non-negative matrix factorization (“constant marginals” reference distribution)

Afghanistan Pakistan
I II I11 IV I II II1 IV
0 grps rnd shuffled data (mean) 1 1 1 1 1 1 1 1
actual data - 1 1 1 1 1 1 1 1
gap A 0 0 0 0 0
1 grp rnd shuffled data (mean) 0.894 0.952 0956 0.960 0.713 0.891 0.843 0.810
actual data - 0.600 0.722 0921 0883 0.773 0.654 0.903 0.888
gap B 0294 0.230 0.035 0.077 -0.060 0.237 -0.060 -0.079
gap statistic (B minus A) 0.294 0.230 0.035 0.077 -0.060 0.237 -0.060 -0.079
rnd shuffled data (std. dev.) 0.040 0.018 0.011 0.009 0.106 0.020 0.022 0.033
2 grps rnd shuffled data (mean) 0.821 0.919 0.922 0.934 0.560 0.823 0.785 0.760
actual data - 0.534 0.669 0.884 0.852 0.631 0.605 0.845 0.829
gap C 0.287 0.250 0.038 0.082 -0.071 0.217 -0.059 -0.069
gap statistic (C minus B) -0.008 0.020 0.003 0.005 -0.011 -0.019 0.001 0.009
rnd shuffled data (std. dev.) 0.051 0.025 0.014 0.012 0.117 0.031 0.023 0.035
3 grps rnd shuffled data (mean) 0.764 0.892 0.894 0912 0.463 0.778 0.739 0.723
actual data - 0493 0.634 0.858 0.831 0.501 0.576 0.785 0.780
gap D 0271 0.258 0.035 0.082 -0.038 0.202 -0.046 -0.058
gap statistic (D minus C) -0.016 0.008 -0.003 0.000 0.033 -0.015 0.013 0.012
rnd shuffled data (std. dev.) 0.053 0.028 0.016 0.013 0.119 0.035 0.024 0.036
4 grps rnd shuffled data (mean) 0.716 0.868 0.869 0.894 0.396 0.741 0.700 0.692
actual data - 0458 0.604 0.836 0815 0.419 0.543 0.750 0.756
gap E 0258 0.264 0.033 0.080 -0.023 0.198 -0.050 -0.064
gap statistic (E minus D) -0.013 0.006 -0.002 -0.002 0.015 -0.004 -0.005 -0.006
rnd shuffled data (std. dev.) 0.055 0.030 0.017 0.013 0.115 0.036 0.024 0.037
5 grps rnd shuffled data (mean) 0.674 0.847 0.846 0.879 0.347 0.710 0.664 0.668
actual data - 0427 0577 0816 0.798 0.353 0.518 0.720 0.737
gap F o 0.247 0.270 0.030 0.080 -0.006 0.192 -0.056 -0.069
gap statistic (F minus E) -0.011 0.006 -0.003 0.001 0.017 -0.006 -0.005 -0.005
rnd shuffled data (std. dev.) 0.055 0.031 0.017 0.013 0.108 0.036 0.024 0.037

Columns I-II use the model in Section 2.1; ITI-IV use the model from Section 2.2.

Columns I and III consider only districts with more than three attacks.

Columns IT and IV use all districts, but weight districts by the number of attacks.
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A Spectral Clustering Consistency

Each off-diagonal %; entry will converges to 7; as the number of time periods grows,
and the 'y matrix will converge to I'y. Thus, L will converge to L. Asymptotically,
the correct number of the sample eigenvalues of L will approach zero. From a theoretical
perspective, a test statistic similar to that given in Yao, Zheng, and Bai [2015] could be used
to determine the number of zero eigenvalues. This test statistic appears to have originated
from Anderson [1963], and a simplified version appears to be appropriate in this case: the
eigenvalues that are converging to zero are doing so at a /T rate, and thus for the K
smallest eigenvalues, the test statistic v/T'S r, Ay or TS 0 | A2 could be used.?® However,
the asymptotic distribution of these test statistics is not clear, and it is also not obvious that
a subsampling bootstrap approach would yield the correct distribution either. Simulations
suggest that here are certain cases where the correct number of groups will only be obtained
with high probability when a very large number of time periods are observed. Specifically,
consider the case where «;; is positive but very close to zero for some ¢ and j. That is, there
are members of group j in district ¢, but there are very few of them. In this case ~;; will
be very close to zero for all the other i’ that contain members of group j. It is thus difficult
to distinguish between 7 containing its own separate group, and ¢ being a part of group j.
Given the difficulty of a formal test, heuristic methods are used.

The estimate J corresponds to an eigenvalue such that A\ is “small” for all £ < J. The
presence of high eigengaps on the right hand side of Figure 6 is not relevant for the eigengap
procedure, as eigenvalues preceding the gaps on the right hand side of Figure 6 are “large”.
In particular, Luxburg (2007) suggests that the cutoff between “small” and “large” should
not be larger than the minimum degree in the graph, and this is trivially met by J=1
but would be violated by any much larger estimate. Although the “eigengap” approach is
intended to be heuristic rather than formal, it is possible to compare the first eigengap to
simulated data where there is no group structure. Compared to data where the attacks in
each district have been reassigned to a random date, the first eigengap shown in Figure 6 is

larger, and this difference is statistically significant at the 95% level.

30The asymptotic argument is made with a fixed number of districts, N, and a growing number of time
periods, T.

47



B NNMF Consistency

' will converge to 'y with an asymptotically normal distribution, by the Cramer-Wold
device and the fact that the underlying distribution of attacks has finite fourth moments. Let
W, = ||T% —T4||, where T'%, is the estimated covariance matrix for the model with & groups.
When k = J, f";, will converge to 'y, and thus W; will converge to zero. The estimated
& that produce I'y will be a consistent estimator for the true o so long as the standard
GMM assumptions are satisfied. As is usually the case, however, the GMM identification
condition is challenging to prove. Huang, Sidiropoulos, and Swami [2014] discuss uniqueness
of symmetric non-negative factorizations at some length. They conclude that while there are
no obvious necessary conditions to check for uniqueness, simulations reveal that multiplicity
of solutions does not appear to be a problem unless the correct factorization is extremely
dense: factorizations with 80% non-zero entries are still reconstructed successfully. The 'y
matrices considered in this paper would generally be expected to have a relatively sparse
factorization, so long as insurgent groups have geographic territories. One concern might
be that diagonal entries has been zeroed out in 'y, and disregarding these entries would
increase the probability of factorizations being non-unique. There is no evidence of problems
with non-uniqueness, however in the results reported in Tables 10 to 12.

Additional groups will not worsen the model fit, and thus W;,; will also converge to
zero. For values k < J, W will converge to a positive value, so long as a;» > 0 for at
least two districts ¢ and k" > k. The main difficulty is thus in selecting a threshold such that
asymptotically k& = J will be selected instead of k = J+1 or K < J. Convergence of W; and
W1 is at the standard /T rate, and thus any threshold that also shrinks at this rate will
lead to an inconsistent estimator: this includes any the rule of thumb “one standard error”
rule from Tibshirani, Walther and Hastie [2001], as the errors in the random model with no
group structure will also shrink at v/T" rate. The solution would be to use a threshold that
shrinks to zero, but at a rate slower than v/7T. The probability of an incorrect selection of
k = J 4+ 1 or higher number of groups would then decrease to zero ansymptotically, and the
probability of k£ < J being selected would similarly decrease. The asymptotic argument is

theoretical, in the sense that only one data set is actually avaible: the “one standard error”
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rule is used with it, and a hypothetical larger data set would call for a more stringent rule.

C Estimation using monthly covariance matrices

Suppose that attack probabilities are relatively small. Then the number of attacks by
unorganized militants can be approximated using a Poisson((;,n¢;) distribution instead of
using the actual Binomial((;,n,¢;) distribution. Similarly, the distribution of attacks by
members of an organized group can be approximated with Poisson((;mejai;) in place of
Binomial((im €, aij).-

Now, suppose that there are a total of x;,, attacks in district i. Conditional on there
being a total of xz;, attacks, the distribution of these attacks across days is given by a
Multinomial(z;,,, p;) distribution, where p; is a probability vector with elements of the form

nli + 37, €
Pit =
> (nli + Zj €1 Qij)

If in some other district ¢’ there were x;,, attacks, then the covariance of daily attacks has

the useful form

Tim  Ti'm

COV(%‘W, Iz’/m) = TimTi'm E PitPirt — 77
t

T T

1 1
= Izmxz'm(z DitPi't — T : f)
t

Cov(Zim., Tirm.)

= SCOV(pita pi’t)

TimTi'm
where SCov(pj, pir) gives the sample covariance for a given draw of €. The first line of the
above holds because each attack decision is independent given both the total number of
attacks and the realization of e. If the e are constructed such that ), es; = 1, then the
denominator in the expression above for p;; will simplify such that
>, Qitinjo;
(Tnti + 32 i) (Tl + 32 ciry)

If the distribution of € conditional on the number of attacks is the same as the unconditional

SCOV(pit> pi’t) =

distribution of €, then the above will hold because the number of attacks is a sufficient

statistic (if the e are independent of the number of attacks?). The Tné; + >, a;; term can
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Tnli+3,; cuj is the

be taken to be the “average” number of attacks, which implies that &;; =

fraction of attacks in district ¢ that group j will be responsible for. Then
COV(Pit;Pi't) = Z&ijdi’jajz
J

2 are not separately identified. If the normalization ¢? = 1 is used, then the

Here & and o ;

estimated & describe relative degrees to which groups are more or less responsible for attacks,

across districts (and groups?).
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