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Abstract 

This research examines the strategic conditions that drive entrepreneurial innovators to 
pursue novel innovation, rather than innovation that is closer to existing technologies. 

Since radical breakthrough innovation is harder to communicate than incremental 
counterpart, entrepreneurial innovators may be steered away from breakthrough 

innovation where the cost of developing credible information of breakthrough idea is 
exceedingly high. In the context of Orphan Drug Act (ODA), this study uses a difference-
in-difference approach to measure whether entrepreneurs are more likely to bring novel 

innovation when the policy change unexpectedly lowers the cost of developing 
convincing information through a small market test. Using a new measure of novelty of 

innovation and a detailed panel dataset of therapeutic molecules, the empirical study 
finds that biotech startups bring more breakthrough drugs in the markets affected by 

ODA.  This research also finds that, in the ODA-affected areas, entrepreneurs hold novel 
projects longer before contracting with large partners and to generate more revenue 

streams from pursuing novel innovation. Taken together, this study suggests that the cost 
of convincing hinders entrepreneurs to market novel innovation and that a public policy 
can moderate the inefficiency in “market for ideas” by decreasing communication cost. 
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 “Investors tend to be herded into the drugs that depend on proven mechanisms. Once a novel 
pathway survives clinical studies, they crave projects targeting the same mechanism, leaving 

other pioneering but worthwhile projects overlooked,” manager at a bay area biotech company 
 

Introduction	  

 

What types of innovation do startups bring to market through partnership? To 

increasing extent, entrepreneurs have commercialized their inventions in a cooperative 

setup. They license technological intermediates to large incumbent firms, to access 

partners’ well-established commercialization assets (Teece 1986, Pisano 1991, Gans and 

Stern 2003, Arora, Fosfuri et al. 2004). Market transaction of an immature technology, 

however, requires costly exchange of information between two organizations 

(Williamson 1979, Hegde 2011, Tadelis and Zettelmeyer 2011, Hermosilla and Qian 

2013). In particular, radical breakthrough innovation is often harder to communicate than 

incremental counterpart, due to lack of available information necessary for valuation 

(Henderson 1993, Sorescu, Chandy et al. 2003, Hsu 2004, Rothaermel and Deeds 2004, 

Pisano 2006, Litov, Moreton et al. 2012, Marx, Gans et al. 2014, Alvarez-Garrido 2015). 

Where it is hardly possible to convey credible information about the prospect of novel 

innovation, startups may avoid pursuing radically novel projects that they are capable of. 

My research aims to understand what constraints entrepreneurs seeking to commercialize 

novel innovation face and how they overcome the pitfalls using policy incentives.  

I use a difference-in-difference approach to measure whether entrepreneurs are 

more likely to bring novel innovation when a policy change unexpectedly lowers the cost 

of developing credible information. The empirical context analyzed in this paper is 

Orphan Drug Act (ODA). The act originally aims to facilitate the development of 

treatments for rare diseases. Interestingly, small drug developers have found that the 

policy incentives ease them to develop “proof-of-concept” products of novel drugs with 

which to persuade partners (Howell 2015). Using a new measure of novelty of innovation 

and a panel dataset of therapeutic molecules, the empirical study examines whether 

biotech startups are more likely to market breakthrough drugs in the areas affected by 

ODA.  This research also finds that, in the ODA-affected areas, entrepreneurs hold novel 

projects longer before contracting with large partners and to generate more revenue 
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streams from pursuing novel innovation. I address that the goal of this paper is not to 

evaluate the direct impact of ODA on orphan drug development. Rather, this research 

sheds a new light on a positive externality of ODA: the act reduces information 

asymmetry between entrepreneurial innovators and large incumbent firms seeking to 

collaborate for novel innovation. 

To fix ideas, consider the case of Remicade that was initially approved as an 

orphan drug but soon became a blockbuster drug. Centocor, Inc, a biotech company 

founded in 1979, developed Infliximab, one of the first drugs based on monoclonal 

antibody (mAb) that intervenes in tumor necrosis factor (TNF) to moderate inflammatory 

responses. The company believed that Infliximab could treat a series of autoimmune 

diseases. But, neither the company could afford to run costly clinical studies 

independently nor it could find a financing partner without having precedent evidence. 

Alternatively, it developed Infliximab as a treatment for Chron’s disease, a rare 

inflammatory disorder. By doing so, it took advantage of the incentives provided by 

ODA. Moreover, because the rare disease affected only a small number of patients, the 

company didn’t have to recruit many patients for clinical studies, which saved 

considerable costs. When Infliximab was approved as Remicade in 1998, Johnson & 

Johnson immediately recognized its potential to treat other – more common - 

inflammatory diseases such as rheumatoid arthritis and psoriatic arthritis. Since two years 

later, as an independent subsidiary of Johnson & Johnson, Centorcor, Inc has expanded 

the drug’s labels to treat more than eight disorders. Remicade became the first anti-TNF 

biologic therapy to treat one million patients worldwide, considered as one of the most 

successful orphan drugs. The example of Remicade demonstrates how a biotech startup 

convinces a large partner of the value of a radical drug, showcasing it in a small market 

using the ODA incentives. 

 Why should we care about novelty of entrepreneurial innovation? The significant 

impact of breakthrough innovation on social welfare is well documented (Schumpeter 

1942, Rothaermel 2000, Fleming 2001, Katila 2002). Moreover, entrepreneurs have 

better capabilities and incentives to deliver radical innovation to market (Anderson and 

Tushman 1990, Henderson and Clark 1990, Cohen and Klepper 1996, Cohen and 

Klepper 1996, Tripsas 1997, Sosa 2009). However, as many small startups draw upon 
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market mechanism to deliver their innovation to market, failure in “market for ideas” 

may distort the incentives of entrepreneurial innovators. Prior research studying the 

market inefficiency has mainly focused on the danger of unwanted spillovers (Arrow 

1962, Gans, Hsu et al. 2008, Katila, Rosenberger et al. 2008). This study suggests that the 

huge cost of transferring information to a partner can also be a source of market 

inefficiency. The empirical findings provide practical implications to startups and policy 

makers upon how to moderate value translation problem associated with radical 

breakthrough innovation. Moreover, this research traces a whole stream of revenues 

generated from novel technologies beyond the initial commercialization success, 

shedding a new light on the long-term effect of pursuing novel innovation on the growth 

of an individual firm. 

 In addition, this study makes methodological and therapeutic implications.  

With a few exceptions (Chatterji and Fabrizio 2014, Teodoridis 2014), the direction of 

entrepreneurial innovation has been overlooked due to measurement challenges. It is even 

harder to investigate types of commercialized innovations, because one cannot use a 

patent data: filing a patent does not necessarily mean that a patent holder commercializes 

the technology. This empirical study brings a new measure of novelty of marketed 

technologies using the originality of scientific mechanisms behind a drug.  

More importantly, less attention has been paid to the types of innovations because 

prior research analyzes commercialization choices of entrepreneurs in the lens of 

sequential decision-making process: a startup innovates, and then decides whether to 

market its technology and, if so, how. In reality, however, entrepreneurs consider external 

factors affecting profit generation from the beginning, to decide which projects to 

advance and finally bring to market. In this sense, innovation and marketing decisions of 

entrepreneurs are endogenous to environmental conditions (Pinch and Bijker 1987, 

Lounsbury and Glynn 2001, Kuan 2015). My findings support the view of entrepreneurial 

decision-making in the context of technology commercialization. 

 This research joins the growing literature on technology commercialization 

strategies (TCS). In particular, a handful of recent literature focuses on the dynamics of 

TCS where entrepreneurs alternate commercialization modes to acquire complementary 

assets (Wakeman 2010, Hsu and Wakeman 2013, Marx and Hsu 2013) or to develop 
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information necessary for partnership (Marx, Gans et al. 2014). My research aims to add 

new causal evidence on the dynamic TCS research, connecting the TCS studies to the 

literature on radical breakthrough innovation.  

The paper proceeds as follows. Section 1 discusses related literature and derives 

testable hypotheses. Section 2 describes the empirical context as well as a brief scientific 

background. Section 3 introduces data and Section 4 explains methodology.  Empirical 

results follow in Section 5. Section 6 concludes.  

Theory	  and	  Hypotheses	  	  

 

 A sheer volume of studies on economics and innovation report that market 

outcomes depend on the quality of available information (Greenwald, Stiglitz et al. 1984, 

Myers and Majluf 1984, Tadelis and Zettelmeyer 2011), and that breakthrough 

innovation is more vulnerable to communication challenge, compared to innovation 

closer to existing knowledge base (Alvarez-Garrido 2015). It suggests that entrepreneurs 

promoting novel innovations may have extra burden in using market mechanism for 

commercialization. Then, changes in environmental factors affecting the cost of 

convincing may impact the types of innovations transferred in “market for ideas.” 

This section first discusses why it is harder for startups pursuing novel innovation 

to find incumbent partners, compared to counterparts developing technologies depending 

on existing scientific base. Then, I review the TCS literature to discuss dynamic 

strategies that startups use to overcome the constraints. I derive a series of testable 

hypotheses drawing upon the previous research. 

 

Challenges	  against	  partnership	  for	  novel	  innovation	  

	  

 Novel breakthrough innovation is vulnerable to information asymmetry problem. 

A developer knows the value of a novel technology better than anybody else, but often 

fails to convey the information to a potential partner. Why does the value translation 

problem occur? 



	   5	  

 First, large incumbent firms often lack scientific understanding to evaluate 

radically novel technologies.  Many technologies outsourced from entrepreneurial 

innovators are at the scientific frontier, which could disrupt the way an industry operates. 

In contrast, the strength of incumbent players lies in the deeper understanding of existing 

technologies and markets. For example, when biotechnology emerged in 1980s and 

1990s, many pharmaceutical companies, most of which had developed drugs based on 

small-sized chemical molecules, struggled to evaluate the potential of biotechnology-

based drugs (Pisano 2006, Hughes 2011, Werth 2013). Even now biotech firms are 

considered to have better understanding of the new technology than large partners, which 

accounts for increasing inter-firm collaboration. When a partner has not enough 

knowledge to understand a technology subject to partnership, it is hard to distinguish true 

information from cheap talk and, thus, vulnerable to a “lemons problem (Akerlof 1970, 

Pisano 1997, Mirowski and Van Horn 2005).” In this case, it is critical to have previous 

evidence on performance to convince less-informed party of the prospect of a technology. 

By its nature, however, a radically breakthrough innovation lacks precedent performance 

record. It makes most communication efforts of startups unverifiable.  

 Second, incumbent firms don’t have proper metrics to evaluate the potential of 

radical technologies. Initially, disruptive technologies perform poorly on dimensions that 

are currently valued by incumbent partners and consumers (Christensen and Bower 1996, 

Christensen 2013, Marx, Gans et al. 2014). Consider Pixar’s case. Since its foundation, 

Pixar annually visited Disney in pursuit of partnership but Disney constantly declined the 

offer for ten years. “Even today there is no electronic process that produces anything 

close to ‘Snow White quality’ and there is little reason to believe there ever will be,” 

Frank Thomas, a filmmaking giant at Disney, wrote, “and old-fashioned animation has 

more control and more freedom, and also offers a greater range of expression.” It was 

evident to Disney that Pixar’s three dimensional (3D) computer animation technologies 

couldn’t match Disney’s capabilities, specifically in the aspects that Disney thought 

consumers of animation valued (Price 2009). 

 In addition to asymmetric information, high costs involved in novel innovation 

also make partnership challenging. Development of radical technologies incorporates 

high uncertainty, and thus, greater failure rates, because of the unique and unprecedented 
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nature. The low probability of success doesn’t rationalize costly investment required for 

commercialization of new technology.  

Not only that, incumbent firms internally have greater cost of integrating radical 

technologies, due to the fear of cannibalization of existing competences.  A firm pursuing 

radical innovation needs to adopt new knowledge as well as new organization process 

(Chandy and Tellis 1998, Sorescu, Chandy et al. 2003). Moreover, resources that have 

been concentrated on existing pipelines should be redistributed or dismissed, which 

creates resistance within a firm (Kelly and Amburgey 1991, Tripsas and Gavetti 2000).  

An influential line of research classifies innovations that are competence-destroying 

(requiring new organizational skills to successfully commercialize) and competence-

enhancing (those that build upon the existing knowhow) (Marx, Gans et al. 2014). It 

documents that new entrants have greater incentive to pursue competence-destroying 

innovations, while established incumbent firms tend to support innovations that sustain or 

reinforce their existing portfolio (Levinthal and March 1993, Christensen and Bower 

1996). When smartphone market was emerging, for example, LG electronics decided not 

to enter into the smartphone market, stating “feature phone forever” as its informal 

slogan. The decision wasn’t reversed until the ultimate parent firm of LG replaced most 

executive board members of the mobile phone division as well as ended a long-term 

partnership with a consulting partner. 

 Although both information asymmetry and high cost explain the difficulty of 

commercializing novel innovation through partnership, the latter doesn’t necessarily 

distort incentives of players in “market for ideas.” However, the former factor can create 

inefficiency in the market. Thus, it is important to analyze the causal impact of reduced 

information asymmetry on the incentives of entrepreneurial innovators for novel 

innovation.  

 One challenge of using ODA is that the act affects startups’ choices through two 

channels simultaneously. A small market test using the ODA incentives decreases 

information asymmetry problem but, at the same time, the incentives also decrease the 

development costs associated with radical innovation. I use a series of empirical tests to 

tease out the impact of reduced information asymmetry from the impact of cost reduction. 
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Technology	  commercialization	  strategies	  and	  types	  of	  technological	  innovation	  

Inspired by the seminal work of Teece (1986), the TCS literature studies the 

determinants of commercialization choices of entrepreneurial innovators, between 

independent market entry and collaboration with incumbent partners. While partnership 

with incumbent firms allows entrepreneurs to tap into well-established complementary 

assets in a timely and cost effective manner, transfer of technologies at early stage also 

causes the danger of unwanted knowledge spillover (Arrow 1962, Caves, Crookell et al. 

1983, Katila, Rosenberger et al. 2008). A stream of TCS research finds that, the more 

significant incumbent firms’ complementary assets are for commercialization and the 

stronger protection intellectual property regime provides, the more attractive cooperative 

commercialization choices become to entrepreneurial innovators (Gans and Stern 2003, 

Arora, Fosfuri et al. 2004, Gans, Hsu et al. 2008). 

A handful of recent literature points out that prior research doesn’t reflect 

dynamic aspect of TCS.  Commercialization of a technology is not a static game. Rather, 

startups “switchback” between independent market entry and cooperation with 

incumbents to either acquire essential assets and skills or to develop convincing 

information with which to persuade potential partners (Wakeman 2010, Hsu and 

Wakeman 2013, Marx and Hsu 2013). In particular, Marx, Gans, and Hsu (2014) finds 

that, when entrepreneurial innovation involves a disruptive technology, startups initially 

pursue market entry before switching to a cooperative commercialization strategy to 

reduce high integration cost of incumbent firms.   

 The example of Pixar and Disney demonstrates the use of initial market entry in 

pursuit of future partnership. When Pixar had constantly failed to attract attentions from 

Disney, Lucasfilm suggested Pixar a partnership to generate the famous scene of Startrek 

where the Enterprise spaceship crewmembers practice battles using a virtual simulation 

machine. The Startrek scene created by Pixar became the first movie scene that adopted 

rigorous 3D computer animation technology. Soon after the successful debut of Pixar, the 

technology division of Disney began seriously considering the potential of 3D 

technology. A few years later, Disney finally partnered with Pixar to use the disruptive 

technology to produce animation (Price 2009).  
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 However, independent market entry of a startup is not a feasible option in many 

high-tech sectors, because advanced development and commercialization require capital-

intensive processes and tacit knowledge. For example, a biotech firm rarely affords to 

conduct a standard Phase III clinical trial alone. A sponsor of clinical study has to recruit 

a large number of patients – more than 3,000 in some Phase III clinical trials. Moreover, 

it has to monitor whether multiple testing regions apply the same trial protocols and to 

make judgments about the efficacy and the safety of tested drugs, depending on the 

information collected on a regular basis. It is not an easy task for a small entrant firm to 

conduct independently. The vast costs of independent market entry, taken together with 

the challenge of partnership with incumbent firms, leave very limited commercialization 

options to startups developing breakthrough innovation.  

 When an external factor enables startups to independently run small-sized market 

tests, however, startups can develop credible information of a novel technology at 

affordable cost (Howell 2015). ODA provides a variety of incentives and guidance for 

developers of treatments for rare diseases, and small startups have taken advantage of the 

act to test novel drugs in small-sized clinical trials targeting small rare disease markets. 

The context serves as an useful setting to understand the impact of information friction on 

the types of innovation delivered by entrepreneurs.  

 

Hypothesis 1-1. The Orphan Drug Act leads entrepreneurs to develop radical 

breakthrough innovation. 

 

 One challenge of using ODA for this study is that the act affects incentives of 

drug developers through multiple channels. Specifically, it is challenging to tease out the 

impact led by decrease in information asymmetry from the impact caused by cost 

reduction. Two mechanisms may impact entrepreneurs’ behaviors in different ways. If 

information friction problem is the main reason that firms seek for orphan designation, 

we should observe that molecules developed by the applicants are more novel, and thus, 

are harder to communicate. In contrast, cost reduction leads firms to develop “marginal” 

drugs that would have not been developed otherwise because of too high uncertainty or 

mediocre economic value. Those marginal drugs don’t necessarily be novel. Moreover, if 
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the cost reduction channel is the main driver, there should be no difference in the 

magnitude of impact between distinct groups experiencing different level of information 

asymmetry problem.  

To clarify the impacts caused by different channels, I compare the behaviors of 

the US-based biotech firms and the EU-based biotech firms. I argue that ODA affects two 

groups through different mechanisms: the former through the information asymmetry 

mechanism and the latter through the cost reduction mechanism, relatively.  

The difference in timing of the ODA enactment across two regions and regional 

variation justifies the argument. ODA have existed since 1983 in the US, allowing the US 

firms to benefit from cost reduction led by ODA. If an US firm wanted to take advantage 

of the cost benefits to advance marginal drugs, it could apply for orphan status in the EU 

without waiting for the adoption of ODA by the EU. While the extra cost reduction may 

still impact US firms’ incentives, the cost reduction impact is relatively marginal 

compared to the impact on the EU firms. By contrast, because the act was first introduced 

in 1999 in the EU, the EU-based firms observed relatively dramatic drop of drug 

development costs. To summarize, the cost reduction channel has more significant impact 

on the EU firms than the US firms.  

On the other hand, the information friction channel affects the US firms in a 

greater magnitude. While both the US and the EU biotech firms can reduce value 

translation problem using the ODA incentives, it is a group of the US firms that ex ante 

suffers more from information asymmetry problem in the EU market. Compared to the 

EU firms, the US firms have relatively fewer networks with the European Medicine 

Agency (EMA) and with the European pharmaceutical companies. Network, reputation, 

geographic distance, language and culture barriers all disproportionately hamper the US 

firms over the EU firms. The EU version of ODA can help the foreign firms to moderate 

information friction in the EU market.  

Figure 2 visualizes the differential impact of ODA on the US firms and the EU 

firms.  I predict that a group of firms that had had greater communication challenge is 

more likely to develop novel drugs after ODA. An assumption behind the next hypothesis 

is that the EU version of ODA affects the US firms mainly through the information 

channel and that the cost reduction channel affects the EU firms more than the US firms.  
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Hypothesis 1-2. The impact of the Orphan Drug Act on novelty of innovation is greater 

for the US-based biotech firms. 

 

 Meanwhile, the decreased market testing cost led by ODA also affects the way 

startups and incumbent partners collaborate as well as market outcomes. In many cases, 

startups transfer technological intermediates at early development stage to finance the 

projects. It doesn’t cause a problem when startups and incumbent partners can correctly 

estimate the value of technologies at early stage. For example, when two firms 

collaborate for technologies closer to existing scientific evidence, both parties have 

enough information available for valuation. When it comes to the transfer of radical 

technologies, however, the transaction at early development stage worsens information 

asymmetry problem, and, thus, negatively affects market outcomes led by lack of 

information. When it becomes available to showcase a prototype product in a small 

market, startups developing novel innovation may want to advance the project up to the 

extent that the firms can credibly persuade partners about the prospect of radical 

technologies.  John Lewicki, the head of research and development at OncoMed 

Pharmaceuticals addresses this point clearly. 2 The novel drug company wants to “hold 

onto the (novel) drugs for as long as possible and create as much value as we can before 

partnering our products with large pharmaceutical companies,” and “this takes a lot of 

money,” said Lewicki. 

 

Hypothesis 2-1. ODA leads entrepreneurs to hold their drug development projects longer 

before contracting with partners. 

 

 Understanding the change in partnership practice helps us to answer the following 

question: who should conduct market test of radical technologies? From a startup’s 

perspective, doing initial market test by itself is beneficial, because the market test 

outcomes reduce information friction and, thus, put the firm on superior bargaining 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  OncoMed Pharmaceutical is a clinical stage biotech company that seeks to develop an 
innovative cancer therapy based on cancer stem cell research.	  
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position during negotiation. The circumstance helps a large partner either, because the 

partner can use more information at the timing of deal. Moreover, from the social welfare 

perspective, allowing startup innovators to play active roles in developing radical 

technologies may lead to efficient resource allocation among alliance partners (Grossman 

and Hart 1986, Aghion and Tirole 1995), causing superior market outcomes. The next 

hypothesis investigates the impact of ODA on the performance of “market for ideas.” 

 

Hypothesis 2-2. ODA increases the probability that an entrepreneurial innovator 

contracts a partnership agreement.  

 

 Lastly, I examine how the ODA affects the long-term commercialization 

performances of pursuing novel innovation. A firm’s expected returns from investing in a 

particular knowledge arise from not only its current product building on this knowledge 

but also the whole stream of potential products in the future exploiting this knowledge 

(Toh and Polidoro 2013). Do startups promoting radical innovation make more profitable 

and sustainable revenue streams? How does external condition moderate the 

compensation? The third hypothesis seeks answers for these questions.  

 

Hypothesis 3. The Orphan Drug Act helps startups generate grater and sustainable 

revenue streams from pursuing radical innovation.  

 

A strength of this research lies in that the empirical study traces a whole stream of 

revenues generated from breakthrough innovation beyond the initial commercialization 

success. It deepens our understanding on the process through which a startup expands an 

initially marketed technology to multiple markets to recoups R&D costs occurred in early 

stage. Thus, it sheds a light on the long-term performances of developing breakthrough 

innovation. 

Empirical	  Context	  

Drug	  approval	  process	  
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 A series of regulatory procedures and requirements strictly governs the 

pharmaceutical sector to guarantee the efficacy and the safety of approved drugs. 

Usually, it takes 12 to 18 years for a therapeutic molecule to get a marketing approval 

from a regulatory agency such as the Food and Drug Administration (FDA) in the US. 

While I discuss the drug approval process in the US in this section, general procedures 

are similar for other regions including the European Union (EU).  

 Figure 1 visualizes the drug approval process in the US. A drug developer first 

identifies a therapeutic molecule or a target that possibly treats one or multiple disorders. 

It takes 2 – 8 years to optimize a lead molecule. Then, with the lead molecule, a company 

conducts preclinical studies including animal studies to test the basic safety and the 

efficacy of the molecule approximately for 5 years. When the drug candidate survives all 

required preclinical studies, the developer submits an Investigational New Drug (IND) 

application to FDA, to conduct clinical studies.  

 Clinical trials consist of three phases. Phase I study tests the general safety of a 

drug candidate with 20 – 100 healthy volunteers. Phase II study validates the efficacy of a 

drug with 100 – 300 patients who suffer from an initially targeted disease. Lastly, in 

Phase III trial, trial sponsors run randomized and controlled multicenter trials to confirm 

the safety and the efficacy of a drug with 1,000 – 3,000 patients. Each phase 

approximately takes 1.5 years, 2 years, and 3 years, respectively. When a drug survives 

all clinical studies, then the developer submits a New Drug Application (NDA). It takes 

for a year for FDA to review all procedures and finally approve the marketing of a drug. 

Only 16% of drugs tested in clinical trials make it all the way to the approval stage.  

 In many cases, a developer seeks label expansion of an approved drug beyond the 

initially targeted disease indication (Shineman, Alam et al. 2014). The “re-purposing” of 

existing drugs requires another sets of clinical studies, but the risk and the cost related to 

label expansion are much lower than developing a brand-new molecule because the 

safety and the efficacy of a drug are previously proven.  

Orphan	  drug	  act	  (ODA)	  

	  
ODA was first enacted by the United States (US) in 1983 to facilitate the 

development of treatments for rare diseases. In the US, rare disease is defined as one that 
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affects fewer than 200,000 people a year. Rare diseases had remained “orphan” because 

too small market sizes didn’t justify the costly development of medications. To intervene 

in the market failure problem, the policy provides orphan drug developers a variety of 

incentives including tax benefits associated with clinical trial costs, regular guidance 

meeting with FDA and market exclusivity. The considerable success of the act 

encouraged the European Union (EU) and other countries to adopt the similar legislation 

(Lichtenberg and Waldfogel 2003, Cheung, Cohen et al. 2004, Yin 2008). The EU’s 

adoption of ODA in 1999 marked the biggest change since the enactment of ODA by the 

US.  This research examines the marginal impact of the enactment of ODA by the EU, 

because there were few biotech startups when the US adopted the act in 1983. 

To make use of the incentives provided by ODA, a drug developer has to file an 

application that states 1) which molecule to use, 2) which disease indication to target, and 

3) why the molecule is the best therapy for the specified disease. An applicant should 

prove why the target disease satisfies the rare disease criteria. When a regulatory agency 

approves the application and grants an orphan designation to the molecule, the developer 

can enjoy the ODA incentives to develop a designated molecule as an orphan drug 

(Grabowski 2005).  

 Currently, there are 7,000 rare diseases worldwide affecting approximately 30 

million patients in the US and 350 million worldwide. Approximately 95% of rare 

diseases lack a single FDA-approved treatment. Nearly 360 orphan drugs were marketed 

and 2,500 compounds have been granted orphan designations. Marketed orphan drugs 

include the well-known drugs including Gleevec, Rituxan and Humira. Some orphan 

drugs have had enormous success. Rituxan, for example, was granted orphan status for 

the treatment of B-cell Non-Hodgkin’s lymphoma. With expanded use in other types of 

cancer and rheumatoid arthritis, it had sales of $5.24 billion in 2010, marked as the 

world’s second most profitable drug (EvaluatePharma 2013).  

Recently, there has been an interesting controversy surrounding the expansion of 

orphan drugs for multiple indications. Some advocates of ODA are concerned that drug 

developing firms are abusing the ODA incentives to develop drugs that potentially cure a 

broad range of indications including non-orphan diseases and, thus, would have been 
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developed without ODA (Wellman-Labadie and Zhou 2010, Stephens and Blazynski 

2014). The FDA recently admitted the gamesmanship, by stating that 

 

[...Nevertheless, controversy has existed over some drug manufacturers exploiting the 

ODA	  by marketing orphan-approved drugs for non-orphan use or by monopolizing drug markets. 

Recently, the FDA has issued final regulations that seek to clarify the ODA in an attempt to 

ameliorate these problems. ... The FDA believes that drug companies were previously seeking out 

the narrowest possible orphan subsets “to avail themselves of orphan-drug benefits when the 

overall approved use is not an orphan use.” ...] 

 

Others argue that it is the potential of label expansion of orphan drugs that 

motivates drug developers to invest in orphan drug development (Johnson 2014). From 

this perspective, the re-purposing of a novel orphan drug for non-rare indications benefits 

both patients that suffer from rare diseases and those from common diseases.  

  

Data	  

 I develop a panel dataset that includes detailed development and 

commercialization histories of therapeutic molecules. The dataset includes all drug 

development projects across the globe, which ranges from 1980 to 2014. I combine three 

sources to develop the dataset.  

The study mainly draws upon the Pharmaproject database to collect the list of 

pharmacological research projects and associated characteristics. I collect unique drug id, 

drug name, originator, licensees, target disease indications, related patent numbers, and 

the dates of main events including entry, patent application, licensing agreement, 

approval, and expansion to new disease indication. Also, the dataset includes detailed 

molecule specific characteristics including Mechanism of Action (MOA), route, origin, 

weight, molecule structure – the number of hydrogen bond (H.Bond) donors, H.Bond 

acceptors, and rotatable bonds -, diffusion speed within a human body – logP - , whether 

a molecule is patented, and whether it is new chemical entity (NCE). The database is 

widely used by researchers in life science as well as in innovation and management 
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(Metrick and Nicholson 2006, Alcacer, Cantwell et al. 2007, Sorescu, Chandy et al. 2007, 

Blume-Kohout and Sood 2008, Adams and Brantner 2010, Berndt and Trusheim 2012). 

I complement the database with clinical trial and orphan designation data. The 

clinical trial data are collected from clincialtrial.gov. The US orphan designation data are 

obtained from the website of FDA and the EU data are from the EMA. The final version 

of dataset includes a detailed history of each drug candidate, including both successful 

drugs and discontinued ones, from entry to approval and label expansion (or 

discontinuation in the case of discontinued products).  

Table 1 presents summary statistics. The original data includes 49,890 unique 

therapeutic molecules that entered between 1983 and 2014. The drugs are based on 2,481 

unique MOAs. There exist 1,189 disease indications and 12% of these are rare diseases. 

The diseases are categorized into 15 disease categories, including Alimentary/Metabolic, 

Blood & Clotting, Cancer, Cardiovascular, Dermatological, Genitourinary, Hormonal, 

Immunological, Infectious Disease, Musculoskeletal, Neurological, Parasitic, Respiratory 

and Sensory disorders. 42% of total molecules fall in the disease categories mostly 

affected by ODA. Small biotech firms develop 57% of therapeutic molecules in the 

dataset.  I exclude established biotech companies such as Amgen and Genentech from a 

list of small biotech firms. The giant first-generation biotech firms possess as equivalent 

level of complementary resources, experience and reputation as large pharmaceutical 

companies do.  

 

Empirical	  Study	  Design	  

Methodology	  

I use a difference-in-difference (DiD) approach to test the main hypotheses. The 

unit of analysis is at a therapeutic molecule – disease category – year level.	  To formalize 

the DiD method and to provide for statistical interference, I estimate the equation: 

 

Yijt =α j I j +γ t Kt +∑∑ µiΧ i +β0Affectedij +β1AfterODAit +β2Affectedij *AfterODAit +εijt
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Where Yijt  represents the outcome variable (novelty of innovation, indicator of whether to 

be licensed or not, timing between entry and the first licensing deal, and market 

expansion), i indexes individual therapeutic molecule (𝑖 ∈ {1, ... , 𝑁}), j  indexes 

disease categories (𝑗 ∈ {1, ... ,J}) and t indexes year (𝑡 ∈ {1, ... , 𝑇}). AfterODA is a 

binary variable equals to 1 if a molecule enters within a disease category after 1999 and 0 

otherwise. 

Affected is a binary variable equals to 1 to a group of molecules that belong to the 

disease categories disproportionately affected by ODA and 0 otherwise.  I use the nature 

of rare diseases to decide the treatment group and the control group. Appeared in Figure 

3, most rare diseases are either genetic disorders or abandoned disorders for economic 

reasons, generally falling in the blood & clotting disorders, cancers, infectious diseases 

and parasitic diseases categories. The four categories more affected by ODA are my 

treatment group, while other eleven categories are assigned as the control group.  

The coefficient of interest is β2 . The coefficient captures the difference in the 

outcome variables of the treatment group relative to the control group. β0  and β1  explain 

the effect caused by the shocks specific to the treated disease categories and by the 

shocks that concurrently take place with ODA, respectively. I include disease category 

fixed effect and year fixed effect. Χ i  is a vector of control variables. Errors are clustered 

at disease category level. 

I use a triple DiD method to test Hypothesis 1-2. With a triple difference 

estimator, I compare the evolution of the gap between the less known group and the more 

known group in the treated disease categories to the evolution of the gap between the less 

known group and the more known group in the control disease group. The estimated 

formula is as follows:  

 

Yijkt =α j I j +γ t Kt +µiΧ i∑∑ +β0Affectedij +β1AfterODAit +β2LessInfoik +

β3Affectedij *AfterODAit +β4Affectedij *LessInfoik +β5AfterODAit *LessInfoik +
β6Affectedij *AfterODAit *LessInfoik +εijkt
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Where LessInfoik is an indicator variable equals to 1 if a molecule is originated by a 

group of less known firms (H1-2)  - the US firms. Molecule specific controls are 

included. 

To test the second hypothesis on the probability of making a partnership and the 

timing of the first licensing contract, I run a survival analysis using a cox proportional 

hazard model. The model requires two dependent variables. One is an indicator that 

equals 1 if an event of interest takes place and 0 otherwise. The other variable measures 

the time difference between the entry of an observation and the realization of an event of 

interest. I construct the latter variable by measuring the time difference between the entry 

of molecule and the date of the first licensing contract. The estimated regression formula 

is the same as that for H1-1. 

I use the same DiD formula to test the third hypothesis. H3 examines the 

trajectories of label expansions for other disease indications beyond the initially targeted 

disease. Naturally, the dependent variable is a count variable.  Thus, I test the outcomes 

with Poisson regressions and negative binomial regressions, while I use binomial logit 

regression for H1 where dependent variable is a binary variable. 

Variables	  

	   Dependent	  variables	  

 Novelty of innovation (H1) I measure novelty of drugs using the originality of 

mechanisms used by the drugs. A drug intervenes in human body through a specific 

mechanism. For example, angiogenesis-inducing cancer drugs block the oxygen delivery 

channels to tumor cells, to induce the natural death of cancerous cells. mAb-based cancer 

drugs deliver toxins directly to the problematic cells. A majority of allerge medications 

blocks the histamine receptors to reduce the level of histamine absorbed into a body. 

These mechanisms are called Mechanism of Actions (MOA). MOA is not only a widely 

used term among drug developers and researchers in related fields (Danzon 2000, 

Higgins and Rodriguez 2006, Toh and Polidoro 2013), but also an important measure of 

the novelty of drug as appeared in the following Nature article. 
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 “As a productivity year I’d give [2014] a 3 out of 3,” says Chris Milne, Director of 

Research at the Tufts Center for the Study of Drug Developemnt in Boston, Massachusetts, USA. 

In terms of innovation, however, Milne ranked the 2014 approvals only “a 2 out of 3.” The 

reasons being, drug companies seek approvals for agents that act on the same proven targets and 

indications. For example, among four drugs approved for type 2 diabetes, two are second- and 

third-in-class sodium-glucose cotransporter 2 inhibitors to treat type 2 diabetes and the other two 

are fourth- and fifth-in-class glucagon-like peptide 1-receptor agonists. “There is some of that 

herd mentality here,” he notes (Mullard 2015). 

 

I identify each MOA used by a therapeutic molecule. Then I sort molecules by 

disease category and entry dates, to generate a sequence number. If the number is 1, it 

means that the molecule introduces a brand-new mechanism for the first time. 2 indicates 

that the drug is the second drug that adopts a novel mechanism. From the sense, the 

sequence number is a “novelty score.”3 Then, I construct a binary variable that assigns 1 

to the first five drugs that use a novel mechanism and 0 otherwise. The reported 

regression results use the binary variable as the dependent variable. I run robustness 

checks by adjusting the window and also using the novelty score as a dependent variable. 

The empirical results are robust to the modifications. 

 

Propensity and timing of licensing partnerships (H2) I use a cox 

proportional hazard model to examine changes in the timing (H2-1) of partnership 

agreements and the probability of making a partnership (H2 -2). The analysis requires 

two dependent variables. One is an indicator variable that informs if an event of interest - 

a licensing deal, in this case - takes place or not. I construct a binary variable that gives 1 

if a molecule is subject to at least one licensing agreement and 0 otherwise. The other 

measures the time difference between the entry of a project and the first partnership 

contract.   The Pharmaproject database traces conference presentations, press, patent 

filings, websites, and personal contacts to identify the entry of a new therapeutic 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Note that MOA is not a subject of patent. While patents offer strong protection for 

pharmaceutical inventions, patents do not award exclusionary rights over the scientific principles 
underlying drugs. 
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molecule. I use as the entry date the date that each molecule first appears in the database. 

Then, I sort all licensing agreements associated with a therapeutic molecule by dates and 

select the earliest deal.  Finally, I calculate the time difference between the entry date and 

the date of the first alliance.  

  

 Market expansion (H3) As appeared in Figure 1, a drug developer generates 

a subsequent stream of revenues by re-purposing a previously approved drug. Firms 

pursuing label expansion have to specify which additional diseases to target and run a 

required set of clinical trials. The Pharmaproject database identifies each attempt of label 

expansion with the name of new target disease and the date of statement. I construct a 

count variable that numbers the market expansion events of drugs.  

	   Independent	  variables	  

	   Affected It is a binary variable equals to 1 if a molecule is developed to treat 

a disease belong to the Blood & Clotting category, the Cancer category, the Infectious 

Disease category and the Parasitic category and 0 otherwise.  

 AfterODA It is a binary variable equals to 1 if a molecule is entered after 1999 

and 0 otherwise.  

 LessInfo To clarify what channels through which ODA impacts the novelty 

of entrepreneurial innovation, H1-2 compares the size of the impact between the group 

more vulnerable to information friction and the less concerned group. I restricted samples 

to a group of biotech firms and construct a firm-level group dummy variable that assigns 

1 to the US firms and 0 otherwise. Because the US biotech firms have less information 

available to players in the EU including EMA and European pharmaceutical companies 

than the EU counterparts, the EU version of ODA affects the US firms largely through 

the information asymmetry channel.  

Control	  variables	  

	   Molecule-specific characteristics I control for whether a molecule is patented 

or whether it is a New Chemical Entity (NCE). Also, I control route, origin, drug 

diffusion rate (logP), weight and structure (H.Bond doners, H.Bond acceptors and 

rotatable bonds) of each therapeutic molecule. 
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Results	  

	   Novelty	  of	  innovation	  (H1)	  

 

Figure 4 presents the trend of the novelty of entrepreneurial innovation over time. 

It is not surprising that the novelty of innovation decreases over time, because firms 

repeatedly use pre-existing MOAs. In the treated disease categories, the decreasing 

pattern is greater. However, after the ODA, the novelty of drugs in the treated categories 

springs back, while the novelty keeps decreasing in the control categories.  

Table 2 shows the DiD estimates of the novelty of drugs developed by biotech 

startups. In the base line logit regression in Column (1), the coefficient of the ODA 

dummy is – 0.981, which gives the odd ratio exp (-0.981) = 0.37. Firms are 37% less 

likely to develop drugs based on novel mechanism after ODA. Switch from the control 

disease categories to the treated disease categories yields a change in log odds of (-0.981 

+ 0.142) = -0.839. The ratio of these two odds ratios is the coefficient of my interest.  The 

coefficient of the interaction term is 0.142, which indicates that firms within the treated 

categories are 15% more likely to adopt new mechanisms to develop drugs. The 

magnitude becomes greater and more significant when I control year fixed effect, firm 

fixed effect, and molecule specific control variables. The coefficient of the interaction in 

Column (5) is 0.321, showing that firms in the treated categories are 37% more likely to 

develop novel drugs.  

 Both causal impact and selection into the affected categories can explain the 

increase in the novelty of entrepreneurial innovation. On one hand, the enactment of 

ODA encourages firms to develop radically novel molecules that they would not have 

progressed otherwise. On the other hand, firms developing novel MOAs decide to target 

the disease categories more affected by ODA. To separate these two mechanisms, I 

replicate the estimation in Table 2 using the Phase I clinical trial starting dates instead of 

the dates of molecule entries. As shown in Figure 1, it takes approximately 6 to 8 years 

for a newly studied molecule to enter into clinical studies. Moreover, for a firm to 

sponsor Phase I clinical trial, FDA or EMA should approve an IND application, which 

takes significant times and efforts. Thus, if novelty of drugs entering into Phase I clinical 
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trials increases after ODA, it indicates that the impact is causal rather than driven by 

selection.  

 Table 3 presents the estimation. The coefficient of the interaction term is not only 

greater but also more significant compared to Table 2. The ratio of the odds ratios in 

Table 3 ranges from 4.74 to 5.16, informing that firms in the treated categories are five 

times more likely to advance novel drugs to the Phase I clinical trials, compared to those 

in the control categories. 

 Next, I test H1-2 to investigate the heterogeneous impact of the EU ODA over 

region. ODA simultaneously reduce information asymmetry and drug development cost. I 

compare the behaviors of the US firms and the EU firms, using that the act affects the US 

firms mainly through information asymmetry channel and the EU firms through cost 

reduction. The trend of novelty by firm region in Figure 5 supports my prediction. In the 

control disease categories, novelty of drugs developed by both the EU firms and the US 

firms steadily decreases and there seems to be no difference between two groups. In the 

treated categories, however, the US firms bring more novel drugs than the EU firms do.   

Table 4 shows the outcomes of triple DiD estimations. The coefficient of interest 

is one of Affectedij *AfterODAit *LessInfoik .	  The coefficient accounts for the evolution of 

the gap between the US firms and the EU firms. The ratio is approximately 2 and 

significant across all columns. It indicates that the US firms are two times more likely to 

introduce novel drugs as a result of the ODA by the EU. Alternatively, I restrict my 

samples to the molecules developed by the US firms and those by the EU firms, to run 

DiD regressions with the restricted samples. Column (6) and Column (7) also suggest that 

the US developers adopt radical technologies more than the EU firms do.  

	   Collaboration	  practice	  (H2)	  

	   I turn to the survival analysis to examine the collaboration practice and the 

probability of finding a partner. Figure 6 presents the cumulative density functions of 

survival functions. In the empirical context, “survival” means that at least one licensing 

agreement is made upon a subject molecule.  Panel (c) in Figure 6 shows that, in the 

ODA affected group, firms have higher probability of licensing deals at the end. 

However, the density of the affected group continually lags behind the counterpart 
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density within 1,800 days from entry. It suggests that developers in the affected group 

postpone the first licensing deal until they can create as much information as possible 

before going to a negotiation table. To check the difference in the timing of licensing 

deals, I run a two-sample Kolmogorov-Smirnoff test. The test gives D = 0.0555 and p-

value = 0.00006637, rejecting the null hypothesis.   

Table 5 echoes the prediction. The coefficient of the interaction terms indicates 

that the ratio of odd ratios is exp(0.133) = 1.14. After ODA, molecules in the treated 

disease categories have 10% higher probability of getting licensed.  

 Market	  expansion	  (H3)	  

Finally, Table 6 shows the DiD estimates of label expansion, i.e., re-purposing of 

drugs. With label expansion of approved drugs, developers are allowed to sell the drugs 

in other disease markets beyond the initially targeted disease. Thus, re-purposing 

becomes an important and sustainable means to generate revenue from investing in a 

technology. The Poisson regression yields a significant and positive coefficient of 

interaction term. Exp(0.245) = 1.28 indicates that, given the other predictor variables are 

held constant, molecules in the affected group are expanded for 0.28 more disease 

indications.  

The samples include many molecules that are never expanded for other disease 

indications. To take this into account, I run negative binomial regressions and check that 

the size and the significance of the coefficients are similar. Figure 6 visualizes that, 

among the novel drugs entered after ODA, molecules in the treated disease categories are 

expanded to approximately three more disease indications than those in the control 

categories.  

 

Discussion	  and	  Conclusion	  

	  

 Breakthrough innovation improves social welfare as well as the growth of an 

individual firm in a significant manner, yet relatively little is known about what leads 

entrepreneurial firms to commercialize novel innovation. Where startups heavily depend 

on partnerships with incumbent firms to bring their inventions to market, firms are not 
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able to advance radical technologies that are not to be well communicated because of 

information friction. ODA provides an useful empirical context, generating variation in 

novelty of entrepreneurial innovation across a group of ex-ante similar disease categories. 

I find evidence that entrepreneurs are 15% more likely to develop radical technologies 

where the availability of a small market test led by ODA drops the cost of generating 

credible information. The magnitude of the impact is greater among a group of firms with 

less previous information, implying that information asymmetry mainly accounts for the 

lack of investment in breakthrough innovation. The results also show that entrepreneurs 

hold their projects longer before contracting with partners. Lastly, in the ODA-affected 

disease categories, startups generate a greater and more sustainable stream of revenues 

from developing novel drugs, by expanding the novel drugs for a greater number of 

disease indications. 

To the best of my knowledge, the research is one of the first papers studying the 

qualitative aspect of innovation transferred through “market for ideas,” speaking to the 

growing literature on technology commercialization strategies (TCS). The findings 

suggest that, while small innovators are prone to introduce breakthrough innovation, the 

firms in needs for collaboration may be steered toward technologies that are easier to 

communicate. From this perspective, this research seeks an answer to the Schumpeterian 

question on which firms introduce novel innovation, between small firms and large firms 

and the main attributes, in the context of collaborative technology commercialization.  

My findings are also related to the boundary of firm question. This research 

shows how technological innovation type affects the division of labor among alliance 

partners. As transaction of novel innovation needs more information, it is efficient for a 

developing firm – more informed party - to hold a technology long enough to develop a 

prototype product or run a small market test. A public policy could lead to efficient 

allocation of resources among partnering firms, by financing an informed party when its 

technology incorporates high uncertainty.   

 Lastly, the evidence in this paper sheds a new light on the ongoing controversy 

surrounding exploitation of ODA. While proponents claim that firms are abusing the 

public resources to develop drugs that would have been anyway developed, the research 

on the positive externality of ODA demonstrates that developers of novel drugs face as 
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much barriers as orphan drug developers do, mainly due to information asymmetry. Then 

don’t we need more public interventions such as ODA to help reduce the information 

asymmetry associated with breakthrough innovation?  

 This study promotes me to study a related stream of research. First of all, a firm 

promoting novel innovation needs additional funding to develop a prototype product 

before bringing it to a large financing partner.  Private venture capitals (VCs) and angels 

may close the financing gap. Mechanisms of the impact of VC investment may vary over 

types of innovation. The subsequent chapter of my dissertation studies the changes in the 

composition of investors.  

Second, it is interesting to understand the welfare effect of the ODA-driven novel 

drugs. The development and the expansion of ODA-driven novel drugs benefit both 

groups of patients that suffer from rare diseases and common diseases. However, because 

novel drug developers should develop treatments for rare diseases first to benefit from the 

ODA incentives, patients of common diseases have to endure delayed arrival of novel 

treatments. If welfare loss created by the delay is considerable, we may need more 

interventions like ODA to ensure the timely delivery of novel drugs to both the patients 

of rare diseases and those of common diseases (Budish, Roin et al. 2013, Howell 2015). 
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Figures	  and	  Tables	  

	  
Figure	  1.	  Drug	  Approval	  Process	  in	  the	  US	  
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Figure	  2.	  Mechanisms	  Behind	  the	  Impact	  of	  ODA	  
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Figure	  3.	  Category	  Classification	  of	  Common	  Diseases	  and	  Rare	  Diseases	  
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Figure	  4.	  Novelty	  of	  Entrepreneurial	  Innovation	  over	  Time	  
Note:	  y	  variable	  is	  1	  if	  a	  drug	  adopts	  a	  brand-‐new	  mechanism	  of	  action	  and	  0	  otherwise.	  	  	  
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Figure	  5.	  Changes	  in	  Novelty	  of	  Innovation	  By	  Firm	  Region	  and	  Disease	  Groups	  
	   	  

Control Disease Categories

Treated Disease Categories

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

1990 2000 2010
Year

N
ov

el
ty

 o
f E

nt
re

pr
en

eu
ria

l I
nn

ov
at

io
n

Group

EU firms

US firms



	   30	  

	  
Figure	  6.	  Cumulative	  Survival	  Functions	  of	  Licensing	  Probability	  
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Note:	  The	  sample	  includes	  novel	  drugs	  entered	  after	  ODA.	  
Figure	  6.	  Label	  Expansion	  of	  Novel	  Drugs	  
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Descriptive Statistics 

 Statistic N Mean St. Dev. Min Max 
 Entry year 72,972 2,002.894 7.393 1,983 2,014 

Phase I trial year 16,005 2,004.431 6.441 1,989 2,014 
Phase II trial year 17,234 2,004.298 6.668 1,989 2,014 
Phase III trial year 9,310 2,003.664 6.987 1,989 2,014 
Novelty score 72,972 70.061 174.427 1 1,344 
Novel MOA (binary) 72,972 0.163 0.369 0 1 
Molecular.Weight 34,527 466.767 282.251 0.000 3,736.210 
logP 33,788 2.265 3.178 -28.460 20.680 
H.Bond.Donors 34,207 2.489 3.617 0 53 
H.Bond.Acceptors 34,207 5.594 4.738 0 66 
Rotatable.Bonds 34,207 7.374 7.610 0 112 
Small originators 87,523 0.574 0.495 0 1 
Affected Category 85,669 0.421 0.494 0 1 
Licensed 87,523 0.166 0.372 0 1 
Times from entry to licensing 13,060 1,473.975 1,422.639 0 10,655 
Rare diseases 87,523 0.125 0.330 0 1 
Entry after ODA 72,972 0.692 0.462 0 1 
Patented 87,523 0.222 0.416 0 1 
EUfirm 87,523 0.328 0.469 0 1 
USfirm 87,523 0.429 0.495 0 1 
Number of unique molecules 49,890     
Number of unique diseases 1,188     
Number of unique categories 15     
Number of unique MOAs 2,481     
Table	  1.	  Descriptive	  Statistics	  
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 Dependent variable: 

  
 Novelty of MOA used in drugs 

 (1) (2) (3) (4) (5) 
 AffectedCategory -0.634** -0.669** -0.045*** -0.230*** -0.508** 

 (0.250) (0.272) (0.015) (0.070) (0.221) 
      AfterODA -0.981*** -1.839*** -0.996*** -1.693*** -0.801*** 

 (0.067) (0.170) (0.073) (0.097) (0.128) 
AffectedCategory:AfterODA 0.142* 0.148 0.115 0.120 0.321** 

 (0.072) (0.097) (0.075) (0.087) (0.134) 
Constant 0.049     

 (0.131)     
Molecule Controls No No No No Yes 
Year Fixed Effect No Yes No Yes Yes 
Category Fixed Effect No No Yes No Yes 
                  Note: Molecule-level observation. All estimates are from binomial logit regressions. Samples are biotech 
firm-originated molecules only.  
*p<0.10; **p<0.05; ***p<0.01. 
Table	  2.	  DiD	  Estimates:	  	  Impact	  of	  ODA	  on	  Novelty	  of	  Entrepreneurial	  Innovation	  
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Dependent variable:  

Novelty of drugs advanced to Phase 1 clinical trials 
    

 (1) (2) (3) (4) (5) 
 AffectedCategory -2.440*** -2.580*** 1.582*** -2.087*** -2.209*** 

 (0.401) (0.432) (0.059) (0.335) (0.483) 
      Ph1_afterODA -2.548*** 0.368 -2.545*** 0.461** -2.080*** 

 (0.299) (0.254) (0.304) (0.192) (0.425) 
      AffectedCategory:Ph1_afterODA 1.640*** 1.710*** 1.598*** 1.675*** 1.556*** 

 (0.300) (0.356) (0.310) (0.362) (0.433) 
      Constant 3.509***     
 (0.359)     
Molecule Controls No No No No Yes 
Year Fixed Effect No Yes No Yes Yes 
Category Fixed Effect No No Yes No Yes 
       Note: Molecule-level observations. All estimates are from binomial logit regressions. Samples in  
Column (1) to (5) include all therapeutic molecules entered to the Phase I clinical trials.  
*p<0.10; **p<0.05; ***p<0.01. 
 

 

  
Table	  3.	  DiD	  Estimates:	  	  Impact	  of	  ODA	  on	  Novelty	  of	  Drugs	  Entered	  into	  Phase	  I	  Trials	  
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 Dependent variable: 

  
 Novelty of Innovation 

 (1) (2) (3) (4) (5) (6) (7) 
 AffectedCategory -0.723*** -0.777** 0.103 -0.446*** 0.703** -1.160*** -0.377 

 (0.262) (0.305) (0.065) (0.131) (0.307) (0.280) (0.269) 
        AfterODA -0.978*** -1.465*** -1.016*** -1.305*** -2.826* -1.330*** -0.721*** 

 (0.092) (0.149) (0.109) (0.120) (1.468) (0.118) (0.258) 
        USfirm 0.388*** 0.490*** 0.337** 0.437*** 0.886***   
 (0.137) (0.149) (0.151) (0.164) (0.127)   
        AffectedCategory:AfterODA 0.014 0.061 -0.013 0.038 0.048 1.013*** 0.116 

 (0.139) (0.145) (0.148) (0.138) (0.342) (0.153) (0.226) 
        AfterODA:USfirm -0.265** -0.388*** -0.212 -0.335** -0.556**   
 (0.123) (0.139) (0.140) (0.159) (0.232)   
        AffectedCategory:USfirm -0.203 -0.195 -0.175 -0.161 -0.383   
 (0.161) (0.177) (0.161) (0.179) (0.271)   
        AffectedCategory:AfterODA:USfirm 0.459*** 0.402** 0.441** 0.378** 0.919**   
 (0.169) (0.177) (0.173) (0.181) (0.364)   
        Constant 0.348***       
 (0.115)       
Molecule Controls No No No No Yes Yes Yes 
Year Fixed Effect No Yes No Yes Yes Yes Yes 
Category Fixed Effect No No Yes No Yes Yes Yes 
                Note: Molecule-level observations. All estimates are from binomial logit regressions. Samples in  
Column (1) to (5) include all therapeutic molecules developed by small biotech firms.  
Column (6) and (7) are DiD estimates with the molecules originated by American biotech firms  
and by the European biotech firms respectively.  
*p<0.10; **p<0.05; ***p<0.01. 

 
Table	  4.	  Triple	  DiD	  Estimates:	  Heterogeneous	  Impact	  of	  ODA	  on	  the	  Innovation	  of	  the	  
US	  Biotech	  Firms	  and	  the	  EU	  Biotech	  Firms.	  
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 Dependent variable: log(hazard ratio of being licensed) 
  
 Survival Analysis: Likelihood of Contracting a Licensing Agreement 

 (1) (2) (3) (4) (5) 
 AffectedCategory -0.179*** -0.165*** 0.296 0.180 -0.031 

 (0.038) (0.040) (0.205) (0.207) (0.056) 
      AfterODA 0.334*** 2.381*** 0.329*** 0.510 0.074 

 (0.034) (0.583) (0.034) (0.583) (0.053) 
            AffectedCategory:AfterODA 0.081* 0.099** 0.094* 0.110** 0.133* 

 (0.048) (0.049) (0.048) (0.049) (0.071) 
Molecule Controls No No No No Yes 
Category Fixed Effect No No Yes No Yes 
Year Fixed Effect No Yes No Yes Yes 
            Observations 7,676 7,676 7,676 7,676 3,452 
R2 0.033 0.139 0.040 0.143 0.120 
Max. Possible R2 1.000 1.000 1.000 1.000 1.000 
Log Likelihood -60,869.150 -60,425.380 -60,841.250 -60,404.640 -24,455.220 

Wald Test 246.390***  
(df = 3) 

1,300.770***  
(df = 31) 

303.600***  
(df = 15) 

1,334.830***  
(df = 43) 

489.960***  
(df = 23) 

LR Test 257.240***  
(df = 3) 

1,144.779***  
(df = 31) 

313.034***  
(df = 15) 

1,186.250***  
(df = 43) 

440.433***  
(df = 23) 

Score (Logrank) Test 249.475***  
(df = 3) 

1,524.387***  
(df = 31) 

307.086***  
(df = 15) 

1,568.237***  
(df = 43) 

521.423***  
(df = 23) 

      Note: Molecule-level observations. All estimates are from cox proportional hazard models. 
*p<0.10; **p<0.05; ***p<0.01. 
Table	  5.	  Survival	  Analysis	  Estimates:	  Impact	  of	  ODA	  on	  Licensing	  Probability	  and	  
Timing	  of	  Deals	  
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 Dependent variable: 

  
 Drug Label Expansion (Re-purposing) 

 (1) (2) (3) (4) (5) (6) 
 AffectedCategory -0.024 -0.026 0.010 0.047 0.047 0.033 

 (0.024) (0.024) (0.041) (0.035) (0.036) (0.058) 
       ODA -0.021 0.074*** -0.298 0.056** 0.104 -0.549 

 (0.019) (0.029) (0.254) (0.027) (0.070) (0.569) 
AffectedCategory:ODA -0.005 0.00003 0.131** 0.017 0.030 0.245*** 

 (0.027) (0.028) (0.052) (0.043) (0.043) (0.079) 
Constant 0.243***   0.321***   
 (0.016)   (0.022)   
Molecule Controls No No Yes No No Yes 
Year Fixed Effect No Yes Yes No Yes Yes 
              Observations 24,140 24,140 4,880 7,106 7,106 1,710 
Log Likelihood -29,999.790 -29,882.590 -6,676.685 -10,323.580 -10,234.080 -2,674.318 
Akaike Inf. Crit. 60,007.580 59,831.190 13,459.370 20,655.170 20,534.170 5,454.637 
       Note: Molecule-level observations. All estimates are from Poisson regressions. Samples in  
Column (1) to (3) include all therapeutic molecules. Samples in (4) to (6) only include novel 
therapeutic molecules. 
*p<0.10; **p<0.05; ***p<0.01. 
 
Table	  6.	  DiD	  Estimates:	  Impact	  of	  ODA	  on	  Subsequent	  Commercialization	  of	  Novel	  
Drugs	  
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