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Abstract

Two key features robustly describe ideological differences in society: (i) individuals per-
sistently disagree about objective facts; (ii) individuals also disagree about which sources can
be trusted to provide reliable information about these facts. We develop a model in which
these patterns arise endogenously as the result of small deviations from Bayesian information
processing. Individuals receive information from direct observation, subject to an ideological
bias of which they are unaware. They also receive information through social networks and
media. Sources differ in their reliability and individuals must learn which sources they can
trust. We show that the entry of partisan information sources could generate large ideological
disagreements, even when individuals have arbitrarily small biases and observe the same set
of sources. Individuals may also come to trust the most biased like-minded sources, leading to
ideological segregation in social networks and extreme bias by strategic media outlets.
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1 Introduction

Individuals persistently disagree about objective facts along ideological lines. Fervent political

debates over the validity of global warming, evolution, and vaccination have persisted long after

the establishment of a scientific consensus. The First Assessment Report of the Intergovernmental

Panel on Climate Change (IPCC 1990) crystallized a scientific consensus that global temperatures

are rising. However, a 2013 Pew survey found that while over 80 percent of Democrats believe

that there is solid evidence to show that the earth is warming, fewer than half of Republicans and

fewer than 30 percent of Tea Party Republicans do. Similarly, Darwinian evolutionary theory has

been dominant among academicians for nearly a century. Yet, a 2013 Pew survey also found that,

while over 70 percent of Democrats believe that humans have evolved over time, fewer half of

Republicans do.

Where do these ideological differences come from? A clue is that, while news consumption

in the U.S. is not generally segregated or one-sided (Gentzkow and Shapiro 2011; Prior 2013),

individuals disagree intensely over which news sources can be trusted to provide reliable informa-

tion. Public Policy Polling (2013), for instance, found that while over 70 percent of Democrats

trust MSNBC, a left-leaning television broadcaster, fewer than 10 percent of Republicans do. By

contrast, nearly 80 percent of Republicans trust Fox News, a right-leaning broadcaster, while fewer

than 25 percent of Democrats say the same.

We propose a theory in which divergent trust of information sources arises endogenously as the

result of small deviations from Bayesian information processing. The theory predicts large and per-

sistent disagreements even when all individuals have access to identical and arbitrarily informative

signals. We show that the proliferation of partisan information sources increases ideological polar-

ization even when media consumption is unsegregated. We then endogenize choices by firms and

peers in media markets and social networks, and show that endogenous choices amplify political

disagreements through ideological segregation in social network formation and media consump-

tion.

In our model, individuals wish to learn a distinct state variable ωt ∈ {0,1} drawn independently

in each period t. Each state is associated with a binary ideology, L or R, also drawn independently

each period. Each individual receives a noisy private signal about ωt with a fixed precision. We
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think of private signals as capturing information from personal experience, logical reasoning, or

articles of faith. We deviate from pure Bayesian information processing by assuming that an L- or

R-biased agent misreads the private signal with positive probability when the signal disagrees with

her ideological leaning, but that she does not realize this mistake. Each individual also receives

signals about ωt through social networks and media. These external information sources differ

in their reliability. Individuals entertain the possibility that external signals may be arbitrarily

correlated and must learn their joint distribution.

Our first main result is that an agent with any bias fails to fully learn the underlying state,

even in the limit where she observes a large number of independent and unbiased neighbors. The

intuition for the result is simple: Each agent learns the precision of sources by observing the

frequency of agreements between observed signals. Since she believes that her private signal is

unbiased, the private signal is the yardstick against which all other signals are judged. However, the

agent fails to account for her bias and is hence overconfident in her private signal. She eventually

comes to believe that her neighbors are less precise than they in fact are and that their signals are

correlated. Consequently, she fails to infer the underlying state from her neighbors, even though

she could have had she known the actual precisions of her neighbors.

Our second set of results shows that ideological disagreements about the underlying state ωt

increase with the prevalence of partisan sources even when two agents observe the same set of

information sources. These disagreements can be both large and persistent. Suppose, for exam-

ple, that two individuals with moderate but opposite biases observe a large number of both biased

and unbiased information sources. We find that they may disagree as much as half the time in

expectation even after a large number of periods — much more than if she had only observe un-

biased neighbors. To see why, consider that each agent observes too frequent agreements with

her neighbors when the underlying state and her ideological bias are aligned to justify her initial

belief about her own precision. Consequently she becomes more overconfident about her private

signal and correspondingly less confident about the unbiased neighbors. Therefore the introduc-

tion of partisan information sources intensifies ideological disagreements, despite the absence of

ideological segregation in social networks or media consumption.

We relax our assumption that networks are fixed and unsegregated to obtain our third set of

results: Biased information processing generates ideological homophily. More formally, we show
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that a biased agent’s trust in her neighbor increases with the neighbor’s bias when her own signal

is sufficiently imprecise. Such agents segregate into ideologically similar groups when the cost of

obtaining information is high. Furthermore, media outlets adopt extreme partisan position in order

to attract such listeners. Both effects increases the intensity of ideological disagreements in the

population.

Formally, our model is most closely related to the literature on asymptotic agreement under

Bayesian learning. A number of classic papers argue that when two agents observe a common

sequence of exchangeable signals and agree on zero probability events, they will asymptotically

agree on the data generating process (Savage 1954; Blackwell and Dubins 1962). More recently,

Acemoglu et al. (forthcoming) demonstrate that a small amount of uncertainty and heterogeneous

priors could lead to significant asymptotic disagreements due to lack of identification. Our model is

a variant of the latter work: In our setup, each individual must learn the trustworthiness of multiple

information sources from sequences of signals, with a different underlying state in each period.

We then apply this theoretical framework to study the effect of media market structure and social

networks on political polarization. In this sense, our work is also related to models in which media

bias arises from preference for like-minded news or reputational concerns (see, e.g., Mullainathan

and Shleifer 2005; Gentzkow and Shapiro 2006; Burke 2008; Stone 2011). We deviate from these

papers by deriving conditions under which bias and ideological disagreements persist even in the

asymptotic limit where aggregate information becomes arbitrarily large.

Topically, our work relates to the large literature on the causes and effects of political polariza-

tion (Glaeser and Ward 2006; McCarty et al. 2006). While we theoretically study the relationship

between media and polarization, a number of empirical papers consider the effects of media on

ideological extremism (Campante and Hojman 2013; Prior 2013). A literature relate ideological

extremism to non-Bayesian information processing (Lord et al. 1979; Glaeser and Sunstein 2013;

Ortoleva and Snowberg 2015). By contrast, Benoit and Dubra (2014) explain attitude polariza-

tion using a rational theory of information processing. A related literature considers ideological

segregation in social networks (Gentzkow and Shapiro 2011; Flaxman et al. 2013; Halberstam

and Knight 2014). A large body of empirical work also study the effects of media on political

beliefs and behavior (DellaVigna and Kaplan 2007; Gerber et al. 2009; Chiang and Knight 2011;

Enikolopov et al. 2011; Falck et al. 2014; Martin and Yurukoglu 2014).
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The paper proceeds as follows. Section 2 describes the model and discusses the assumptions

of the model. Section 3 discusses convergence in the asymptotic limit when agents have observed

signal realizations over many periods. Section 4 characterizes when agents are able to learn the un-

derlying state. Section 5 characterizes asymptotic ideological disagreement in exogenously fixed

social networks where all agents observe the same set of signals. Section 6 characterizes asymp-

totic disagreement when agents endogenously choose their neighbors and media outlets strategi-

cally choose their biases. Section 7 concludes.

2 Model

In this section, we develop a model of imperfect Bayesian learning from potentially biased infor-

mation sources. The model explains how large ideological disagreements may arise when agents

must learn which information sources to trust or distrust.

2.1 Preliminaries

There are a large number of agents i ∈ {1, . . . ,N} and time periods t ∈ {1, . . . ,T}. In each period t,

agents form beliefs about an unknown state of the world ωt ∈ {0,1}. It is common knowledge that

the state is drawn independently each period with Pr(ωt = 1) = 1
2 ∀t. Agents value having accurate

beliefs, and discount the future at rate δ .

In each period, one of the possible states ωt ∈ {0,1} is associated with ideology R, while the

other one is associated with ideology L. Let rt and lt = 1−rt denote the R- and L-associated states,

respectively. The ideological assignment rt does not depend on ωt and is drawn independently each

period with Pr(rt = 1) = 1
2 . We assume that rt is unobserved to agents. This assumption captures

the idea that agents do not know a priori which policies or scientific conclusions favor one side

of the political spectrum or the other. Rather, ideology emerges endogenously from underlying

correlations in signal generation.1 However, each agent i has a bias βi ∈ [−1,1] and receives

information that favors the state associated with their bias. We will say that an agent i is “unbiased”

if βi = 0, that she is “R-biased” if βi > 0, and that she is “L-biased” if βi < 0.
1To model a world in which ideology is observed rather than unobserved, we might assume that all agents observe

a neighbor j whose signal s jt = rt . This is the case where each agent has neighbors that are fully informative about rt
(as defined in section 5).
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Agents receive information about ωt from two types of sources. First, each agent i observes

a noisy signal sit ∈ {0,1} about ωt in each period t. The signal sit is based on an underlying

signal s̃it ∈ {0,1}, which has precision αi ∈
(1

2 ,1
]

in the sense that s̃it = ωt with probability αi

and s̃it = 1−ωt with probability 1−αi. Unbiased agents will always observe sit = s̃it . R-biased

(L-biased) agents believe they observe sit = s̃it , but in fact mistake s̃it for rt (lt) with probability

|βi|.2

It will be useful to characterize bias in terms of an agent’s likelihood of mistaking s̃it for rt or lt .

We say that an agent i has extreme bias if βi ≥ψ (αi)≡ 1− 1
2αi

and moderate bias if βi < ψ (αi).

For example, if i is an R-biased agent with extreme bias, then Pr(sit = rt) ≥ Pr(sit = ωt). Note

that for any βi ∈
(
−1

2 ,
1
2

)
, there exists an αi ∈

(1
2 ,1
)

such that bias is not extreme.

Second, each agent also observes signals from her social network. Let Iit ⊆{1, . . . i−1, i+1, . . . ,N}

denote the set of agent i’s neighbors in period t. Each agent i directly observes s jt for all j ∈Iit .

In assuming direct observation, we abstract from strategic reporting of signals by agents. We will

later relax this “mechanical reporting” assumption by introducing “media outlets” who know the

distribution of biases in the population and choose βi strategically. For notational convenience, we

write s∼it ≡
{

s jt
}

j∈Iit
and Sit ≡ s∼it ∪{sit}.

2.2 Prior and Posterior Beliefs

We are interested in the evolution of each agent’s posterior beliefs. Let Bit (·) denote agent i’s

posterior belief over the probability of a given event after observing {Siτ}tτ=1 and let Bi (·) =

limt→∞ Bit (·) if the limit exists. We shall summarize each agent’s beliefs using the following

mathematical objects:

1. Let µit = Bit (ωt = 1). We shall say that µit is agent i’s belief of ωt in period t. By com-

puting µit , we can infer whether agents learn the underlying state and how frequently agents

disagree over time.

2. Let Ti jt = Bit
(
s j(t+1) = ωt+1

)
. We shall say that Ti jt is agent i’s trust in agent j in period t.

Note that agent i’s trust in herself is denoted by Tiit . By computing Ti jt , we can infer which

2For an R-biased agent i, sit = s̃it if s̃it = rt ; if s̃it = lt , then sit = s̃it with probability 1− |βi| and sit = rt with
probability |βi|. The case for a L-biased agent is analogous.
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neighbors agent i believes to be more accurate.

Each agent’s inference task over ωt would be straightforward if the joint conditional distribution of

all signals given ωt were known with no uncertainty. However, agents in our model do not know

this joint distribution and must learn it by observing agreements between signal realizations over

time.

This modeling setup captures the idea that we often trust information sources only because

they agree with other sources we trust. One might say, for example, that a new NBER working

paper seems credible because estimates are similar to results by other well-known authors, or that

Republicans are credible on global warming because they agree with Fox News. But this chain has

to stop somewhere. Ultimately we must have some independent point of reference in order to learn

anything at all. The joint distribution of all available signals cannot be identified from observed

signal realizations alone. What an agent learns about ωt depends crucially on the agent’s prior

beliefs about the joint distribution even as t→ ∞.

We think of each agent i’s own signal sit as capturing her independent point of reference. This

signal sit may come from agent i’s personal experiences, logical reasoning, or articles of faith. For

instance, suppose the underlying state concerns the social desirability of unionization. An agent’s

own signal about the underlying state may arise from her personal experience as a union member,

her logical reasoning from economic principles about collective bargaining, or her faith in the

veracity of Milton Friedman or Karl Marx’s writings. Even though the signal may be colored by

ideological bias, in our model each agent i thinks of sit as an unbiased signal of the underlying

state.

To make the above precise, we introduce the following assumption.

Assumption 1. We impose the following restrictions on each agent i’s prior and posterior beliefs:

(a) Agent i’s prior on her own bias βi is degenerate (Dirac) at β̂i = 0.

(b) Agent i’s prior belief of her own precision αi has non-zero density on α ∈
(1

2 ,1
]
, and zero

density elsewhere.

(c) Agent i’s prior belief over the joint distribution of her neighbors’ signals s∼it given ωt has

full support over every possible signal realization.
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Assumption 1(a) implies that agents do not entertain the possibility that they are biased. The

immediate implication is that each agent i believes that errors in sit are uncorrelated with errors in

s jt for all j 6= i. Assumption 1(b) captures the idea that agents do entertain uncertainty about the

precisions of their signals. Their priors may be arbitrarily concentrated on the true αi, but as we

shall see from lemma 1 below, a full-support prior over αi is necessary for the agent to rationalize

all possible signal realizations permissible under the model setup.

Finally, assumption 1(c) posits that agents entertain the full range of possibilities about the

precision and correlation of their neighbors’ signals. They may assign very high prior weight to

what is in fact the true distribution. But they do not rule out the possibility that their neighbors’

signals are noisier than they are, or even perverse, in the sense that they are more likely to be

wrong than right. Similarly, they do not rule out that their neighbors’ signals are correlated with

each other, even if they are in fact independent.

3 Asymptotic Convergence

We now consider the agent’s posterior beliefs as the number of periods grow large. Here we assume

that the social network is fixed over time, i.e., Iit = Ii∀t. In the limit where t → ∞, the law of

large numbers disciplines the agent’s posterior beliefs. Therefore, under certain conditions it is

possible to derive closed-form expressions for the asymptotic limits of Ti jt and µit and use them to

study ideological disagreement in a large class of settings.

We first ask whether the above assumptions on the agent’s beliefs can be consistent with the

data that she observes. We shall say that the the data violate the agent’s model of the world if

the likelihood that the agent assigns to the observed data approaches zero. Under what prior beliefs

does this occur?

Lemma 1. The agent’s model of the world is not violated by agent i’s observed signals in the limit

as t → ∞ if and only if for all s ∈ {0,1}|Ii|, Pr(sit = 1|s∼it = s) ∈ [1−α,α] for some α in the

support of i’s prior on αi.

Lemma 1 shows that the data could reject the agent’s model of the world only if her prior

implied her signals precision was relatively low with probability 1. Conditional on believing her
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signal is sufficiently precise, an agent can always rationalize observed signal realizations. Given

assumption 1(b), lemma 1 implies the data never violate the agent’s model of the world.

The following lemma provides sufficient conditions for the agent’s beliefs to converge to well-

defined limits. The conditions are much stronger than necessary, but they simplify the analysis that

follows.

Lemma 2. Suppose that assumption 1 holds. Furthermore, suppose that agent i’s prior distribution

on her precision αi is F i
n, where

{
F i

k

}∞

k=1 a sequence of prior distributions each with non-zero

density f i
n on

(1
2 ,1
]
, zero density elsewhere, and the property that for any α ′ and α such that

|α−αi| < |α ′−αi|, the likelihood ratio f i
n (α

′)/ f i
n (α) goes to zero in the limit where n→ ∞.

Then as n→∞, in the limit where t→∞, µit converges in distribution to a random variable µi and{
Ti jt
}

j∈Ii
converges in probability to constants

{
Ti j
}

j∈Ii
.

Lemma 2 establishes that if agent i’s prior belief over αi is sufficiently concentrated around

the true value, the induced posterior distribution over her neighbors signals is nearly degenerate in

the limit as t → ∞. We shall say that the limit Ti j is agent i’s asymptotic trust in j, and µi is i’s

asymptotic belief. For the remainder of the paper, we focus on characterizing asymptotic beliefs

and trust, which apply approximately to agents whose priors place high weight on values of αi

close to the true value.

4 Asymptotic Learning

We now ask whether it is possible for an agent to correctly learn the underlying state ωt if she

observes a large number of unbiased and independent neighbors. We use the exercise to provide

intuition over the role that assumption 1 play in the formation of each agent’s beliefs.

We begin with a few useful definitions.

Definition 1. We say that agent i has exogenous trust if her prior over the joint distribution of

neighbors’ signals is degenerate at the truth, and that agent i has endogenous trust if her prior

over this joint distribution has full support, as posited by assumption 1.

Definition 2. There is asymptotic learning for agent i if for any ε > 0, Pr(|µi−ωt |< ε) = 1. We

say that asymptotic learning fails otherwise.
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To build intuition over how the assumptions drive the results we shall establish in this paper,

we first consider a simple example where agent i has a single neighbor j with signal s jt = ωt .

Under exogenous trust, an agent exogenously (and correctly) believes her neighbor’ signal was

fully accurate, and the agent would fully learn the underlying state from the accurate neighbor and

there would be no disagreement.

However, under endogenous trust, an agent with βi 6= 0 must learn how much to trust this

neighbor by observing signal realizations. Given assumption 1, a biased agent is unaware of her

bias and places an inaccurately high prior on the precision of her own signal.3 As a result she ob-

serves too many disagreements between her own private signal and the neighbor’s signal to believe

that her neighbor simply reports ωt . She instead infers that her neighbor must be making mistakes

with non-zero probability. The agent does not fully trust her accurate neighbor even though the

neighbor possesses fully accurate information. Asymptotic learning fails even for arbitrarily small

biases.

Now consider what happens when the agent observes a large number of noisy but unbiased

neighbors under endogenous trust. The following proposition extends the logic of the above ex-

ample.

Proposition 1. Suppose an agent i with αi ∈
(1

2 ,1
)

and βi 6= 0 is connected to N identical neighbors

with α j >
1
2 and β j = 0. Under exogenous trust there is asymptotic learning for agent i in limit

where N→∞. However, under endogenous trust asymptotic learning fails, and agent i’s posterior

distribution over her neighbors’ signals has the following properties as t→ ∞:

1. Ti j < α for all j;

2. All s j are positively correlated.

Proposition 1 shows that, under endogenous trust, agent i perceives her neighbors to be making

correlated errors, when in fact their signals are independent and unbiased. Furthermore, agent i

never fully trusts them and asymptotic learning fails.

3Formally, Tii ≥ αi > Pr(sit = 1 | ωt = 1).
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5 Disagreement under Unsegregated Networks

We now turn to characterizing the magnitudes of ideological disagreements arising from these

social networks. This section considers disagreement when all agents observe the same exoge-

nously fixed neighbors. We show that ideological disagreements increase with partisan informa-

tion sources even without ideological segregation in social networks. In the next section, we relax

the assumption that the network is fixed, and consider how endogenous network formation and

strategic reporting affects the magnitudes of ideological disagreements.

Throughout this section, we consider three representative agents with precision αi = a and

different states of bias: an unbiased agent U with βU = 0, an R-biased agent R with βR = b∈
(
0, 1

2

)
,

and a L-biased agent L with βL =−b. We are interested in the expected asymptotic disagreement

between agents of opposite bias; that is, E [|µR−µL|]. This expression quantifies the extent of

ideological disagreement between the representative R-biased agent and the representative L-biased

agent about an underlying state ωt in the limit as t→ ∞.

We consider two special cases: one where the representative agent has N identical unbiased

neighbors with precision α j >
1
2 , and another where all neighbors instead have some identical

moderate bias β j 6= 0. We characterize ideological disagreement in the limit as these networks

become arbitrarily large (as N→∞). This comparison illustrates the effect of increasingly partisan

news on ideological disagreement in the absence of endogenous sorting and network formation.

5.1 Simplifying the Problem

We begin by recasting our task of deriving posterior beliefs in complex social networks. While

it is possible to derive closed-form expressions for µi in terms of the underlying data-generating

parameters,
{

α j,β j
}

j∈Ii∪{i}, any such expression becomes unwieldy and difficult to interpret as

the number of neighbors grows.

Instead we use the notion of informativeness to summarize the information content available

to an agent through her neighbors. Any set of neighbors can be totally ordered in terms of their

informativeness about ωt (or rt) following Blackwell’s (1951) criterion. Here we examine the

limiting cases as information becomes arbitrarily informative or uninformative.

Definition 3. We say that a set of neighbors Ii is fully informative about ωt if Pr(ωt = ω | s∼it = s)∈
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{0,1} for all ω ∈ {0,1} and s∈ {0,1}|Ii|. We say that a sequence of sets of neighbors approaches

full informativeness if Pr(ωt = ω | s∼it = s)→ 1 or Pr(ωt = ω | s∼it = s)→ 0 for all ω ∈ {0,1}

and s ∈ {0,1}|Ii|. Similarly, Ii is uninformative about ωt if Pr(ωt = ω | s∼it = s) = 1
2 for all

ω ∈ {0,1} and s ∈ {0,1}|Ii|. We define informativeness about rt analogously.

The above definition establishes equivalence classes of neighbors in which information content

available to an agent i along each of the two relevant dimensions becomes either arbitrarily small

or large.

These cases apply intuitively to single-agent networks. An agent with a single neighbor j with

s jt = ωt is fully informative about ωt but uninformative about rt . Conversely, a network consisting

of a single agent k with skt = rt is fully informative about rt but uninformative about ωt . A single

agent can only be fully informative about ωt or rt but never both. However, if an agent i has both

j and k as neighbors, then the set of neighbors is fully informative about both ωt and rt .

A set of neighbors may also approach full informativeness as the social network grows arbi-

trarily large and dense, even if none of the agents are themselves fully informative. The following

lemma shows that the networks described earlier fall in these informational limits:

Lemma 3. A network of N identical neighbors with α j >
1
2 and β j = 0 approaches fully infor-

mativeness about ωt in the limit as N → ∞. A network of N identical neighbors with α j >
1
2 and

moderate bias β j 6= 0 approaches fully informativeness about both ωt and rt in the limit as N→∞.

This characterization is useful because µi simplifies dramatically in these informational limits,

yielding straightforward intuitions and results.4 It is easy to show, for instance, that µi is the

same for any set of neighbors in the same informational limit (e.g., fully informative about ωt and

uninformative about rt). While we established proposition 1 only for the case where the agent has
4To see why µi dramatically simplifies the problem, recall that, by definition, µi is a distribution that depends on

the signal realizations s ∈ {0,1} and s ∈ {0,1}Ii in period t. We can rewrite µi as follows:

µi =

(
1+

Bi (sit = s | ωt = 0)
Bi (sit = s | ωt = 1)

Bi (s∼it = s | ωt = 0)
Bi (s∼it = s | ωt = 1)

)−1

. (1)

Note that Bi (s0t | ωt) ∈ {Tii,1−Tii} and by equation (5), we have that, almost surely,

Bi (s∼it = s | ωt = 0)
Bi (s∼it = s | ωt = 1)

=
Tii−Pr(sit = 1 | s∼it = s)

Tii−1+Pr(sit = 1 | s∼it = s)
. (2)

Suppose ωt = ω and rt = r in period t. If s is fully informative about an underlying state, the probability that sit = 1
conditioned on the realized signal s is effectively the same the probability conditioned on the state. More precisely, it
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a single neighbor j that reports s jt = ωt , the proposition in fact applies whenever an agent has a set

of neighbors that is fully informative about ωt .

5.2 Comparative Statics

First, consider the case where the representative agents are connected to the arbitrarily large net-

work of unbiased neighbors. We establish the following lemma regarding the extent of disagree-

ments between agents of opposite biases.

Proposition 2. Suppose representative agents U, R, and L are each connected to N identical

neighbors with α j >
1
2 and β j = 0. For any a ∈

(1
2 ,1
)
, b ∈

(
0, 1

2

)
, plimN→∞ E [|µR−µL|]≤ b and

plimN→∞ µU = ωt .

Proposition 2 shows that asymptotic disagreement is bounded by the bias of the agents. There-

fore, asymptotic disagreement is small in a setting where individuals only have moderate biases.

Next, suppose the neighbors have moderate bias β j 6= 0. We think of this case as capturing a

world in which agents have access to both objective and partisan news. The addition of these neigh-

bors does not affect inference for the unbiased agent U , but dramatically increases disagreement

between the biased agents.

Proposition 3. Suppose representative agents U, R, and L are each connected to N identical

neighbors with α j >
1
2 and non-zero but moderate bias. For any ε > 0 and b ∈

(
0, 1

2

)
, there exists

a ∈
(1

2 ,1
)

such that each representative agent’s bias is moderate and plimN→∞ E [|µR−µL|] >
1
2 − ε , while plimN→∞ Pr(|µU −ωt |< ε) = 1 for any a ∈

(1
2 ,1
)
.

Proposition 3 establishes two facts. First, despite the addition of moderate bias in all of her

neighbors, the unbiased agent nevertheless accurately learns the underlying state with no uncer-

tainty. Second, agents of opposite but moderate biases in expectation disagree as much as half of

follows that, almost surely,

Pr(sit = 1 | s∼it = s) =


Pr(sit = 1 | ωt = ω) if Ii is fully informative about ωtbut uninformative about rt ;
Pr(sit = 1 | rt = r) if Ii is fully informative about rtbut uninformative about ωt ;
Pr(sit = 1 | ωt = ω,rt = r) if Ii is fully informative about both ωtand rt .

(3)
Combining equations (1), (2), and (3) then yields simple expressions for µi.
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time. The extent of disagreement is significantly larger than when biased agents did not observe

any biased public information.

Consider, for example, the case where each agent’s private signal is very imprecise. That is,

when a→ 1
2 and b→ 0. By proposition 2, there is almost no disagreement between agents of

opposite bias when the neighbors are informative about ωt but uninformative about rt . However,

when neighbors are informative about both ωt and rt , agents may disagree approximately half the

time.

The intuition for proposition 3 is as follows. First note the neighbors being fully informative

about both rt and ωt implies that the space of neighbors’ signals {0,1}|Ji| can be split into two

sets: one with positive probability only when ωt = lt , and another with positive probability only

when ωt = rt . Now consider an R-biased agent with nearly extreme bias. When ωt = lt , her

private signal is nearly uninformative in the sense that it fluctuates randomly between ωt and rt

with probability 1
2 . Thus one set of neighbors’ signals are judged to be useless. On the other hand,

when ωt = rt , she finds herself to be more correlated with the set of neighbors’ signal realizations

than her prior on precision should allow. In order to rationalize the data, she sets µi = rt and

becomes overconfident. Therefore, an R-biased agent’s posterior depends entirely on her (useless)

private signal when ωt = lt , but converges to rt when ωt = rt . The opposite is true for an L-biased

agent, resulting in disagreement approximately half the time in expectation.

Together, propositions 2 and 3 explain how the proliferation of partisan media facilitated by

the Internet could have intensified partisan disagreements throughout the population, even when

individuals are not ideologically segregated in their social networks or media consumption. Due to

endogenous trust, beliefs diverge simply when the partisan content of public information sources

increases.

6 Disagreement under Endogenous Networks

We now examine asymptotic disagreement when individuals endogenously select their information

sources and strategic media outlets choose potentially biased reporting strategies.

14



6.1 Asymptotic Trust

We begin by characterizing how an agent’s trust in her neighbors depends on the precisions and

biases of their signals. Recall that asymptotic trust by i in j is given by Ti j = Bi
(
s jt = ωt

)
. In the

limit where an agent i samples a large number of signals from neighbor j, the law of large numbers

implies that

Pr
(
sit = s jt

)
= Pri

(
sit = s jt

)
= TiiTi j +(1−Tii)

(
1−Ti j

)
almost surely. The limiting value of i’s trust in j is therefore given by

Ti j =
1
2
+

Pr
(
sit = s jt

)
− 1

2
2Tii−1

. (4)

Equation (4) shows that i’s asymptotic trust in a neighbor increases with the frequency that they

agree, and decreases with i’s trust in her own private signal. Furthermore, the sign of the derivative

of Ti j with respect to Pr
(
sit = s jt

)
is invariant to Tii, since by assumption Tii >

1
2 .

As proved in the appendix, we can write out Pr
(
sit = s jt

)
as a function of αi,α j,βi, and β j,

and we have the following lemma.

Lemma 4. Suppose β j 6= 0. Agent i’s asymptotic trust in j (Ti j), holding Tii fixed, is increasing in∣∣β j
∣∣ if and only if sgn(βi) = sgn

(
β j
)

and

|βi|
1−|βi|

≥ 4
(

αi−
1
2

)(
α j−

1
2

)
,

and strictly so if the inequality holds strictly.

Lemma 4 establishes the conditions under which i will come to trust biased neighbors more

than unbiased neighbors. Trust is always decreasing in the magnitude of j’s bias when it is in the

opposite direction to i’s. When i and j are biased in the same direction, trust will be increasing in

j’s bias whenever the precisions of i and j’s signals are low relative to the magnitude of i’s bias.

It follows immediately from lemma 4 that agents of a certain precision and bias will eventually

place their highest trust in the most biased information source of the same ideological leaning. We

formalize this result in the following proposition.
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Proposition 4. For any βi ∈
(
0, 1

2

)
and α j ∈

(1
2 ,1
)

there exists αi ∈
(1

2 ,1
]

such that agent i’s bias

is moderate and i’s asymptotic trust in j is strictly increasing in β j.

Proposition 4 demonstrates that endogenous trust creates ideological homophily among indi-

viduals. Agents come to trust information sources with similar bias more than unbiased sources,

even when their own biases are small.

6.2 Ideological Segregation

We now turn to study the effect of ideological homophily on network structure and belief forma-

tion. We employ the following simple setup. As in section 5, we consider a set of moderately

biased agents who observe their neighbors’ signals directly. We suppose that the population is

made up of the three representative types of agents, namely U , R, and L, in equal proportions.

Similarly, let b = βR =−βL and a = αi denote the agents’ biases and precisions, respectively. But

now suppose that, in each period t, each agent i may only choose a single neighbor jit ∈ {L,R,U}

to observe. This setup approximates a world in which the cost of accessing or sharing information

is high.

Under what conditions do agents listen to the most informative agents they have access to, and

under what conditions do agents with similar ideological biases associate? Suppose that each agent

maximizes an undiscounted sum of their payoffs. Since we assume that agents desire accurate

information and also believe their own signals are unbiased, each agent i’s maximum payoffs are

achieved by observing the neighbor j∗i such that Ti j ≤ Ti j∗i for all j. However, she does not initially

know Ti j and must learn Ti j through observation over time. Consequently, she must trade off

exploration and exploitation in her choice of neighbor each period. As we show in the appendix,

individuals sample a large number of signals from every other agent in the network, but eventually

converge to getting information exclusively from the agent they trust the most.5

As shown in lemma 4, unbiased agents will always come to trust other unbiased agents the

most. For biased agents, however, trust depends on the values of a and b. Holding b constant,

decreasing a always increases the agent’s trust in biased neighbors. Thus, as formalized in propo-

5Our result is a slight twist on a classic result for multi-arm bandits (see, e.g., Lai and Robbins 1985). Typically,
multi-arm bandit payoffs are assumed to be i.i.d. over time; we derive similar properties of the optimal allocation rule
when the payoffs are approximately i.i.d. as t→ ∞.
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sition 4, there exists a > ψ−1 (b) such that for all a < a, biased agents will place the highest trust

in like-minded neighbors in the limit.

We can therefore characterize the resulting network as follows:

Proposition 5. Suppose the population consists of large numbers of representative agents U, R,

and L, and each agent chooses one neighbor to observe each period. Further suppose that each

agent maximizes the sum of payoffs from all remaining periods, and the payoff strictly increases

in the accuracy of the neighbor her observes. Then for any b ∈
(
0, 1

2

)
there exists a > ψ−1 (b)

such that in the limit as t→ ∞, the fraction of periods that agents listen to a like-minded neighbor

converges in probability to one if a < a and the fraction of periods that agents listen to an unbiased

neighbor converges in probability to one otherwise.

This proposition shows that even small, non-extreme biases can result in ideological segrega-

tion: when private information is sufficiently noisy, agents eventually only get information from

like-minded sources.

6.3 Strategic Bias by Media Outlets

We now turn to examine the interaction between ideological homophily and strategic reporting.

Thus far we have assumed that agents are able to directly observe their neighbors’ signals. We

now consider the possibility that some agents misreport their signals strategically in hopes of ac-

quiring connections or reach a larger audience. We interpret such agents as profit-maximizing

media outlets.

To incorporate strategic reporting behavior into our model, we introduce into the population

a small number of media outlets m who choose βm directly and potentially exhibit extreme bias.

Media outlets have access to accurate information (αm = 1), know the distribution of biases in the

population, and can be sampled by agents just like other neighbors from the social network. Before

the first period of observation (i.e., at t = 0), the media choose their own biases βm ∈ [−1,1] to

maximize the number of agents who eventually choose them as the asymptotic information source.

Since trust increases with frequency of agreement, an unbiased agent’s trust increases in the

neighbor’s precision whenever a > 1
2 . Therefore, an unbiased agent trusts a media outlet with

βm = 0 more than she trusts all other agents. By contrast, it follows from proposition 5 that a
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biased agent will instead trust a media outlet with βm =±1 the most if a < a (with the sign of βm

dependent on the direction of the agent’s bias). Therefore, some media outlets strategically choose

extreme biases in a world where agents have small biases and noisy private information.

Even moderately biased agents enter ideological “echo chambers” where their own biases are

reinforced by completely biased information. Ideological segregation in the presence of strate-

gically extreme media and ideologues induces extreme disagreement. In fact, agents of opposite

biases may disagree nearly all the time, even when agents have arbitrarily small biases.

Formally, we have the following proposition:

Proposition 6. Suppose the population consists of large numbers of representative agents U, R,

and L, and each agent chooses one neighbor to observe each period. Further suppose there ex-

ist accurate media outlets (αm = 1) who know the distribution of biases in the population and

strategically choose their biases βm to attract listeners. Then:

1. All media choose βm ∈ {−1,0,1};

2. For any b ∈
(
0, 1

2

)
there exists a > ψ−1 (b) such that in the limit as t → ∞, the fraction of

periods that agents listen to a like-minded media outlet converges in probability to one if

a < a;

3. For any ε > 0 and b > 0, there exists b < b and a ∈
(1

2 ,1
)

such that each agent’s bias is

moderate and E [|µR−µL|]> 1− ε. By contrast, µU = ωt for any a ∈
(1

2 ,1
)
.

Proposition 6 establishes that in a world with strategic media outlets, the unbiased agent is able

to learn the underlying state. However, the presence of strategically extreme media outlets also

engenders extreme disagreements between even moderately biased agents.

7 Conclusion

We study trust in information sources and ideological disagreements in a world where individuals

fail to account for small biases in their private signals. Central to our analysis is the idea that small

biases in private signals are amplified because individuals must infer the precisions of external in-

formation source using their private signals. As a result, small deviations from Bayesian reasoning
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can drive large and persistent disagreements even when all individuals have access to the same set

of arbitrarily informative signals.

We apply our model to understand media markets and social networks. We show that partisan

content in the media could reinforce the magnitude of disagreements, yielding a rationale for why

the proliferation of partisan media facilitated by the popularization of cable television and the

Internet could have intensified partisan disagreements throughout the population. We also show

that it is possible for biased agents to find the most biased like-minded agents most trustworthy.

Such ideological homophily generates ideological segregation, and also incentivizes media outlets

to adopt more extreme positions in hopes of attracting a larger audience.
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Appendices

A Proof of lemma 1

Proof. Let Yi jt ≡ 1
{

sit = s jt
}

. For notational convenience, we write Yit ≡
{

Yi jt
}

j∈Ii
. In the limit

as t → ∞, the law of large number implies that Bi (Yit = s) = Pr(Yit = s) almost surely for any

s ∈ {0,1}|Ii|. Since the agent believes that her private signal is conditionally independent, we can

rewrite Bi (Yit = s) in terms of α̂i and Bi (s∼it = s | ωt = 1). A few lines of manipulation using the

laws of probability then show that, almost surely, Bi (s∼it = s | ωt = 1)

Bi (s∼it = ¬s | ωt = 1)

=
2Pr(s∼it = s)

2α̂i−1

 α̂i−1+Pr(sit = 1 | s∼it = s)

α̂i−Pr(sit = 1 | s∼it = s)

 . (5)

Note that the likelihood that the agent assigns to the observed data does not vanish if and only if (i)

Bi (s∼it = s | ωt = 1) ∈ [0,1] for any s ∈ {0,1}|Ii|, and (ii) ∑s∈{0,1}|Ii| Bi (s∼it = s | ω) = 1. From

equation (5), (i) is satisfied if and only if Pr(sit = 1 | s∼it = s) ∈ [1− α̂i, α̂i] ∀s; and (ii) is trivially

satisfied.

B Proof of lemma 2

Throughout this proof, we will let Pr(X) ≡ Pr(X = x) for notational brevity. Note also that we

depart from the Bit (·) notation in this section for clarity, and use αi0 to denote i’s true precision.

Let ps∼i denote a parametrization of the joint distribution of s∼i for all possible ωt and rt ,

θ ≡ {ps∼i,αi,βi} ∈Θ be a parametrization of the joint distribution of Si, and

AO.E. ≡ {θ ∈Θ | Pr(Yiτ | θ) = Pr(Yiτ | θ0) ∀τ} denote all θ that are observationally equivalent to

θ0, the true parameter. We will use α (θ) to denote the αi associated with θ .

Finally, let fθ (θ) denote the agent’s prior on θ and fθ (· | {Yi1, . . . ,Yit}) denote the agent’s

posterior at time t.
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Proof. We show that fθ converges to a degenerate point mass at

θ
∗ ≡ argmin
{θ∈AO.E.|βi=0,αi>

1
2}
|αi−αi0| .

By lemma 1 and equation 5, θ ∗ is unique.) Let Bθ∗ ≡ B(θ ∗,ε) be an open neighborhood around

θ ∗. Formally, we show that for any Bθ∗ ,

lim
n→∞

lim
t→∞

Pr(θ ∈ Bθ∗ | {Yi1, . . . ,Yit}) = 1. (6)

Since Θ is compact for any finite number of neighbors N, we can construct a finite open cover C

as follows. Start with Bθ∗ covering θ ∗ and another set

BO.E. ≡ ∪θ∈AO.E.|θ /∈Bθ∗B(θ ,ξ )

with ξ < ε , which covers the remaining portion of AO.E.. Then we can complete the cover by

placing small neighborhoods about all remaining points in Θ and taking the finite subcover.

Let Q denote an open set in C. Now we show that equation 6 holds by showing that for

any Q 6= Bθ∗ , limn→∞ limt→∞ Pr(θ ∈ Q | {Yi1, . . . ,Yit}) = 0. For any Q ∈ C, we can rewrite this

expression as

Pr(θ ∈ Q | {Yi1, . . . ,Yit}) =

´
Q fθ (θ | {Yi1, . . . ,Yit})dθ´
Θ

fθ (θ | {Yi1, . . . ,Yit})dθ

=

´
Q fθ (θ)∏

t
τ=1 Pr(Yiτ | θ)dθ´

Θ
fθ (θ)∏

t
τ=1 Pr(Yiτ | θ)dθ

=

´
Q fθ (θ)exp

(
∑

t
τ=1 log

(
Pr(Yiτ |θ)
Pr(Yiτ |θ0)

))
dθ

´
Θ

fθ (θ)exp
(

∑
t
τ=1 log

(
Pr(Yiτ |θ)
Pr(Yiτ |θ0)

))
dθ

. (7)

First we consider BO.E.. We bound Pr(θ ∈ BO.E. | {Yi1, . . . ,Yit}) from above by showing that

the likelihood ratio of θ ∈BO.E. versus θ ∈Bθ∗ becomes small as the sequence of prior distributions
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{
f i
n
}∞

n=1 from the lemma supposition approaches its limit. The likelihood ratio is

Pr(θ ∈ BO.E. | {Yi1, . . . ,Yit})
Pr(θ ∈ Bθ∗ | {Yi1, . . . ,Yit})

=

´
BO.E.

fθ (θ)∏
t
τ=1 Pr(Yiτ | θ)dθ´

Bθ∗
fθ (θ)∏

t
τ=1 Pr(Yiτ | θ)dθ

.

We can rewrite this ratio by splitting the domain of each integral into sets of θ that are observa-

tionally equivalent

Pr(θ ∈ BO.E. | {Yi1, . . . ,Yit})
Pr(θ ∈ Bθ∗ | {Yi1, . . . ,Yit})

=

´ 1
0 p
´

θ∈BO.E.|(∏
t
τ=1 Pr(Yiτ |θ)=p) fθ (θ)dθd p

´ 1
0 p
´

θ∈Bθ∗ |(∏
t
τ=1 Pr(Yiτ |θ)=p) fθ (θ)dθd p

.

By assumption 1 and the supposition in lemma 2, in the limit as n→ ∞, agent’s prior is degen-

erate at βi = 0 and her prior density is decreasing in |αi−αi0| (such that for any αi and α ′i with

|αi−αi0|< |α ′i −αi0|, the likelihood ratio f i
n (α

′
i )/ f i

n (αi)→ 0 as n→ ∞) with it equal to zero for

any θ such that αi <
1
2 .6 Recall that by construction, BO.E. does not contain any points near θ ∗,

which minimizes both |βi| and |αi−αi0|. Thus any ratio of priors from BO.E. to priors from Bθ∗

converges to 0. Formally, for all p such that {θ ∈ Bθ∗ | (∏t
τ=1 Pr(Yiτ | θ) = p)} 6= /0, we have7

lim
n→∞

´
θ∈BO.E.|(∏

t
τ=1 Pr(Yiτ |θ)=p) fθ (θ)dθ´

θ∈Bθ∗ |(∏
t
τ=1 Pr(Yiτ |θ)=p) fθ (θ)dθ

= 0. (8)

Thus we find that

lim
n→∞

Pr(θ ∈ BO.E. | {Yi1, . . . ,Yit})
Pr(θ ∈ Bθ∗ | {Yi1, . . . ,Yit})

= 0.

Now we bound Pr(θ ∈ Q | {Yi1, . . . ,Yit}) from above for all Q ∈C\{Bθ∗,BO.E.}. Let θ ∈Q.

We start with the numerator of equation 7. The summation in the numerator consists of t i.i.d.

random variables with fixed θ and θ0. By construction of Bθ∗ and BO.E., θ is not in the set of

parameters observationally equivalent to θ0, and so E
[
log
(

Pr(Yiτ |θ)
Pr(Yiτ |θ0)

)]
< −cε for some cε > 0.

Thus by WLLN exp
(

∑
t
τ=1 log

(
Pr(Yiτ |θ)
Pr(Yiτ |θ0)

))
converges to 0 at some rate faster than exp(−tcε).

Now we turn to the denominator of equation 7. Shen and Wasserman (2001) lemma 1 shows

that this denominator is bounded below by exp
(
−
√

t
)´

Bt
1
2 fθ (θ)dθ , where Bt is a shrinking

6The construction of this sequence means that the full support prior on ps∼i becomes irrelevant.
7For some p and ξ (the “radius” of BO.E.), it may be that the numerator of equation 8 is positive while the

denominator is 0. In such cases, we can always pick smaller ξ such that the numerator is also 0 (and hence such p
becomes irrelevant for our purposes).
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neighborhood (in t) of AO.E. with all θ ∈ Bt such that |α (θ)−αi0| < |α (θ ∗)−αi0| removed.8

Note that due to the increasingly degenerate prior on αi as n→ ∞ and Bt’s restriction on values of

αi, the rate at which
´

Bt
1
2 fθ (θ)dθ converges to 0 is decreasing in n and slower than exp

(
−
√

t
)
.9

Since the numerator converges to 0 at rate faster than exp(−tcε) and the denominator converges

to 0 at rate slower than exp
(
−2
√

t
)
, we must have

lim
n→∞

lim
t→∞

Pr(θ ∈ Q | {Yi1, . . . ,Yit}) = 0.

Note that the prior fθ (θ) implicitly depends on our choice of n, therefore our choice of t is depen-

dent on n.

The above result, combined with our result for BO.E., implies that

lim
n→∞

lim
t→∞

Pr(θ ∈ Bθ∗ | {Yi1, . . . ,Yit}) = 1.

The lemma then follows immediately by noting that
{

Ti jt
}

j∈Ji
and µit can be expressed as con-

tinuous functions of θit , agent i’s posterior of θ at time t.

C Proof of proposition 1

Proof. The proof of this proposition relies heavily on results from later sections.

First, the result of exogenous trust leading to asymptotic learning follows immediately by

applying equation 3 (from section 5.1) and the agent’s degenerate prior on the joint distribution of

neighbors’ signals.

For (1), Ti j < α j for all j follows immediately after rewriting Ti j in terms of αi,α j,βi, and

β j (following equation 4).10 Now consider two distinct neighbors j and k, and define Ji jk =

8To obtain the lower bound, set tn = 1/
(
2
√

t
)
, where tn denotes the sequence mentioned in Shen and Wasserman

(2001) lemma 1. Then obtain Bt by removing from their shrinking neighborhood (“St”) all θ such that |α (θ)−αi0|<
|α (θ ∗)−αi0|. Since this refinement results in a Bt being a smaller set, the expression remains a lower bound.

9This can be achieved by choosing large enough n∗ from earlier (note that this choice of n∗ does not depend on t).
10In this case, we get Ti j = α j−

(
α j− 1

2

)
βi.
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Bi
(
s jt = skt = ωt

)
. By the inclusion-exclusion principle, we find

Ji jk =
1
2
(
Bi
(
s jt = skt

)
−1+T01 +T02

)
= α

2
j −
(

α j−
1
2

)
βi.

It then follows that Ji jk−Ti jTik =
βi
2

(
1− βi

2

)(
1−2α j

)2
> 0, implying that the agent believes the

covariance between s jt and skt to be positive, proving (2).

D Proof of lemma 3

Proof. Consider the case with N neighbors with α j >
1
2 and β j = 0. We can rewrite the expression

of interest as

Pr(ωt = ω | s∼it = s) =
Pr(s∼it = s | ωt = ω)

Pr(s∼it = s | ωt = ω)+Pr(s∼it = s | ωt = ¬ω)
.

Thus it suffices to show that for any s ∈ {0,1}|Ii|, Pr(s∼it=s|ωt=ω)
Pr(s∼it=s|ωt=¬ω) = 0 or Pr(s∼it=s|ωt=ω)

Pr(s∼it=s|ωt=¬ω) → ∞. By

model construction, we have that

Pr(s∼it = s | ωt = ω,rt = r) =


(
α j
)

∑ j s j
(
1−α j

)N−∑ j s j if ω = 1(
1−α j

)
∑ j s j

(
α j
)N−∑ j s j if ω = 0

.

Rearranging, we find that

Pr(s∼it = s | ωt = 0,rt = r)
Pr(s∼it = s | ωt = 1,rt = r)

=

(
1−α j

α j

)( 2
N ∑ j s j−1)N

.

Now note that plimN→∞

(
1
N ∑

N
j=1 s jt

∣∣∣ωt = ω,rt = r
)
∈
{

1−α j,α j
}

for any r ∈ {0,1}, with the

value depending on ω . The CMT then implies that plimN→∞

Pr(s∼it=s|ωt=0,rt=r)
Pr(s∼it=s|ωt=1,rt=r) ∈ {0,∞} for any

r ∈ {0,1}. This proves full informativeness about ωt . It is easy to show that

plimN→∞

Pr(s∼it = s | ωt = ω,rt = 0)
Pr(s∼it = s | ωt = ¬ω,rt = 0)

= plimN→∞

Pr(s∼it = s | ωt = ω,rt = 1)
Pr(s∼it = s | ωt = ¬ω,rt = 1)
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for any ω ∈ {0,1}, which shows that the neighbors are uninformative about rt .

The result that N identical neighbors with α j >
1
2 and moderate bias β j 6= 0 approaches fully

informativeness about both ωt and rt in the limit as N→ ∞ can be shown using a similar method.

E Proof of proposition 2

Proof. WLOG assume ωt = 1. Suppose the set of neighbors Ii is fully informative about ωt but

uninformative about rt , and recall from equation (3) that Pr(sit = 1 | s∼it = s)=Pr(sit = 1 | ωt = 1).

Lemmas 1 and 2 then imply that Tii = αi. It follows from equation (2) that, with probability 1,

Bi (s∼it = s | ωt = 1)
Bi (s∼it = s | ωt = 0)

=
αi−1+Pr(sit = 1 | s∼it)

αi−Pr(sit = 1 | s∼it)
=

2−|βi|
|βi|

. (9)

Substituting equation (9) into (1), we have

µi =


(

1+ αi
1−αi

|βi|
2−|βi|

)−1
, sit = 0(

1+ 1−αi
αi

|βi|
2−|βi|

)−1
, sit = 1

. (10)

Setting βi = 0 gives Pr(|µU −ωt |< ε) = 1.

Now we examine the degree of disagreement. Note that disagreement is 0 when R and L

agree: |µR−µL|sR=sL
= 0. When R and L disagree:

|µR−µL|disagree =

(
1+

a
1−a

b
2−b

)−1

−
(

1+
1−a

a
b

2−b

)−1

which implies that E [|µR−µL|] ≤ b. The desired results then follow by taking sufficiently large

N.

F Proof of proposition 3

Proof. WLOG assume βi > 0, ωt = 1, and rt = r. Suppose the set of neighbors Ii is fully informa-

tive about ωt and rt , and recall from equation (3) that Pr(sit = 1 | s∼it = s)=Pr(sit = 1 | ωt = 1,rt = r).
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Lemmas 1 and 2 then imply that Tii = αi +(1−αi) |βi|.

Suppose r = 1. By equation (2), with probability 1,

Bi (s∼it = s | ωt = 1)
Bi (s∼it = s | ωt = 0)

=
Tii−1+Pr(sit = 1 | ωt = 1,rt = 1)

Tii−Pr(sit = 1 | ωt = 1,rt = 1)
.

Since 2Tii > 1, it follows immediately that, for any ε > 0, Pr(|µi−ωt |< ε | ωt = rt) = 1.

Now suppose r = 0. Note that Pr(sit = 1 | ωt = 1,rt = 0) = αi (1−βi). Then with probability

1,
Bi (s∼it = s | ωt = 1)
Bi (s∼it = s | ωt = 0)

=
Tii−1+Pr(sit = 1 | ωt = 1,rt = 0)

Tii−Pr(sit = 1 | ωt = 1,rt = 0)
=

(2αi−1)(1−βi)

βi
.

Let αi =
1

2(1−βi)
+ δ , where δ > 0, so the agent’s bias is not extreme. Then, with probability 1,

limδ→0
Bi(s∼it=s|ωt=1)
Bi(s∼it=s|ωt=0) = 1. It follows that, with probability 1,

limδ→0 µi | ωt = lt =

1−Tii if sit = 0

Tii if sit = 1

=


1
2 −βi if sit = 0

1
2 +βi if sit = 1

Note that in the extreme bias limit, sit = 1 with probability 1
2 . In expectation, limδ→0 E [µi | ωt = lt ] =

1
2

(1
2 −βi

)
+ 1

2

(1
2 +βi

)
= 1

2 . The desired result follows immediately by taking sufficiently large N.

In the case of agent U , it follows that limN→∞ Pr(sit = 1 | ωt = 1,rt = 1)=Pr(sit = 1 | ωt = 1,rt = 0)=

αi = Tii.

G Proof of lemma 4

Proof. From equation (4), we have that Ti j monotonically increases with Pr
(
sit = s jt

)
. It is thus

sufficient to derive conditions under which Pr
(
sit = s jt

)
increases in

∣∣β j
∣∣. Writing out Pr

(
sit = s jt

)
in terms of the underlying parameters, we have that

Pr
(
sit = s jt

)
=
(
1−|βi|−

∣∣β j
∣∣+ |βi|

∣∣β j
∣∣)[αiα j +(1−αi)

(
1−α j

)]
+
|βi|
2

+

∣∣β j
∣∣

2
−|βi|

∣∣β j
∣∣1(βiβ j < 0

)
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It follows from taking derivatives and algebraic manipulation that
d Pr(sit=s jt)

d|β j| ≥ 0 if and only if

βiβ j ≥ 0 and

|βi| ≥
(2αi−1)

(
2α j−1

)
1+(2αi−1)

(
2α j−1

) .
The desired inequality follows via a monotonic transformation. Strict inequality can be shown in

the same manner.

H Proof of proposition 4

Proof. We wish to show that for any α j ∈
(1

2 ,1
)

and βi ∈
(1

2 ,1
)
, there exists αi >

1
2(1−βi)

such that
d Pr(sit=s jt)

d|β j| > 0. Let αi =
1

2(1−βi)
+ δ . By lemma 4, it is sufficient to show that there exists δ > 0

such that
βi

1−βi
> 4

((
1

2(1−βi)
+δ

)
− 1

2

)(
α j−

1
2

)
.

This equation can be rearranged as

1 >

(
1+

2δ (1−βi)

βi

)(
2α j−1

)
,

which holds for some δ > 0 so long as βi > 0 and α j < 1.

I Proof of proposition 5

We begin by proving a corollary of SLLN used in our proof of proposition 5.

Lemma 5. Suppose Xi is an i.i.d. sequence of random variables and Y i is a sequence of random

variables where Yi →p Y and Y is a constant. Let f (·, ·) be a function continuous in the second

argument. If E | f (X1,Y )|< ∞, then

∑
n
i=1 f (Xi,Yi)

n
→p E f (X1,Y ) .
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Proof. By SLLN, we have that ∑
n
i=1 f (Xi,Y )

n →a.s. E f (X1,Y ). So it suffices to show that

∑
n
i=1 f (Xi,Yi)

n
→p

∑
n
i=1 f (Xi,Y )

n
.

Since Yi→p Y and f (·, ·) is continuous in the second argument, by the continuous mapping theorem

we have that for any ε > 0 and any δ > 0, there exists n∗ so that for all i≥ n∗,

Pr(| f (x,Yi)− f (x,Y )| ≥ ε)< δ

for all x ∈ R. Then

δ > Pr(| f (Xi,Yi)− f (Xi,Y )| ≥ ε) , ∀i≥ n∗

≥ Pr(∑n
i=n∗ | f (Xi,Yi)− f (Xi,Y )| ≥ (n−n∗+1)ε)

≥ Pr(∑n
i=n∗ | f (Xi,Yi)− f (Xi,Y )| ≥ nε)

≥ Pr(|∑n
i=n∗ f (Xi,Yi)−∑

n
i=n∗ f (Xi,Y )| ≥ nε)

= Pr
(∣∣∣∑

n
i=n∗ f (Xi,Yi)

n − ∑
n
i=n∗ f (Xi,Y )

n

∣∣∣≥ ε

)
.

Thus ∑
n
i=n∗ f (Xi,Yi)

n →p
∑

n
i=n∗ f (Xi,Y )

n . Since ∑
n∗
i=1 f (Xi,Yi)

n →p 0, we are done.

We now turn to our proof of proposition 5.

Proof. In this proof we adopt the perspective of agent i and drop the subscript i except to be

consistent with the rest of the paper. Let J be the set of all potential neighbors of i. Let J∗ ⊂ J be

the set of neighbors that i trusts the most in the limit where i observes all j ∈ J many times.

Let x
(
Ti jt ,Tiit ,Yi jt

)
be the payoff that agent i believes she would receive if she chose to observe

j in period t. The payoff x(·, ·, ·) depends on the agent’s beliefs in period t (Ti jt ,Tiit) as well as

on the observed signal agreement Yi jt ≡ 1
{

sit = s jt
}

. To simplify notation, we write Xt ( j) ≡

x
(
Ti jt ,Tiit ,Yi jt

)
and X ( j) ≡ x

(
Ti j,Tii,Yi jt

)
. If Tiit and Ti jt converge to constants Tii and Ti j in the

limit where t→∞, then we have plimt→∞Xt ( j) = X ( j) and we can write X̄ ( j) = EX ( j). We write

X̄∗ ≡max j∈J X̄ ( j).

We denote agent i’s optimal adaptive decision rule as a random sequence jo
t which depends
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on signal realizations observed by agent i. Let

No
t ( j)≡

t

∑
τ=1

1{ jo
τ = j}

be the number of visits by i to j after period t. Since we assume that agents strictly value informa-

tion, we have X̄ ( j) > X̄ ( j′) if and only if Ti j > Ti j′ . Then by proposition 4, the desired result is

equivalent to No
t ( j)
t →p 0 for all j /∈ J∗.

Suppose for contradiction that the optimal decision rule has the property that No
t ( jo)

t 6→p 0 for

some jo /∈ J∗. Let Jo denote the set of all such jo. Now let Kt ( j) ≡ ∑{τ∈{1,...,t}| joτ= j}Xτ ( j). Note

that
∑

t
τ=1 Xτ ( jo

τ)

t
= ∑

j∈J

Kt ( j)
No

t ( j)
No

t ( j)
t

. (11)

We decompose J into four disjoint sets: Jo, { j ∈ J∗ | No
t ( j)→ ∞}, { j ∈ J∗ | No

t ( j)< ∞∀t}, and

J\(J∗∪ Jo). Since No
t ( jo)→p ∞, and so Ti jot →p Ti jo . Note also that Tiit →p Tii and Yi jt is i.i.d

across periods. Hence by lemma 5, we have that

Kt ( jo)

No
t ( jo)

→p X̄ ( jo)< X̄∗ (12)

for any jo ∈ Jo. By assumption there exists η ,γ > 0 such that for any t∗, there exists t > t∗ such

that

Pr
(

Nt ( jo)

t
≥ η

)
≥ γ (13)

for any jo ∈ Jo. By lemma 5, we have

Kt ( j)
No

t ( j)
→p X̄∗ (14)

for any j ∈ J∗ where No
t ( j)→ ∞. Finally, we have

Nt ( j)
t
→p 0 (15)

for any j /∈ J∗∪ Jo and for any j ∈ J∗ where No
t ( j)< ∞ for all t. It follows from combining (11),

32



(12), (13), (14), and (15) that there exists ε,δ > 0 such that for any t∗, there exists t > t∗ such that

Pr
(

∑
t
τ=1 Xτ ( jo

τ)

t
+ ε < X̄∗

)
≥ δ ,

and for any ε ′,δ ′ > 0, there exists t∗ such that for all t > t∗,

Pr
(

∑
t
τ=1 Xτ ( jo

τ)

t
− ε
′ > X̄∗

)
< δ

′.

We construct an alternate decision rule ja
t using the following procedure. For each neighbor j,

let τ
j

1 < τ
j

2 < ... be disjoint, increasing sequences of positive integers such that τ
j

t /t→ ∞. Agent i

observes neighbor j in period t if t ∈
{

τ t
1,τ

t
2, ...

}
for some j, and if t 6∈

{
τ t

1,τ
t
2, ....

}
for any j, agent

i observes neighbor j in period t with the maximum ETi jt . It follows easily that for any ε ′,δ ′ > 0,

there exists t∗ such that for all t > t∗,

Pr
(∣∣∣∣∑t

τ=1 Xτ ( ja
τ)

t
− X̄∗

∣∣∣∣> ε
′
)
< δ

′.

It follows that there exists ε,δ > 0 such that for any t∗, there exists t > t∗ such that

Pr

(
t

∑
τ=1

Xτ ( ja
τ)−

t

∑
τ=1

Xτ ( jo
τ)> tε

)
≥ δ ,

while for any ε ′,δ ′ > 0, there exists t∗ such that for all t > t∗,

Pr

(
t

∑
τ=1

Xτ ( jo
τ)−

t

∑
τ=1

Xτ ( ja
τ)> tε ′

)
< δ

′.

We have therefore shown that the alternate rule outperforms the optimal rule, yielding the contra-

diction we sought.

J Proof of proposition 6

We begin by deriving the agent’s limiting posterior beliefs when her neighbors are fully informative

about rt but not informative about ωt .
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Lemma 6. Suppose agent 0’s neighbors are fully informative about rt but not informative about

ωt . Then for any ε > 0 and b > 0, there exists b < b and a ∈
(1

2 ,1
)

such that agent 0’s bias is not

extreme and:

1. If β0 = b, |E [µ0− rt ]|< ε .

2. If β0 =−b, |E [µ0− lt ]|< ε .

Proof. We now derive µi for any agent i observing a neighbor who is fully informative about rt

but uninformative about ωt . WLOG suppose ωt = 1. We first consider the case where rt = 1. Since

agent i’s neighbors are fully informative about rt but uninformative about ωt , Pr(sit = 1 | s∼0t = s)=

Pr(sit = 1 | rt = 1) almost surely. It then follows that, with probability 1,

Bi (s∼it = s | ωt = 1)
Bi (s∼0t = s | ωt = 0)

=
α0−1+Pr(s0t = 1 | s∼0t = s)

α0−Pr(s0t = 1 | s∼0t = s)
=

α0 +
1
2β0− 1

2

α0− 1
2β0− 1

2

.

Let α0 =
1

2(1−β0)
+ δ , where δ > 0, so the agent’s bias is not extreme. By continuity, in the limit

where δ → 0, Pr0(s∼it=s|ωt=1)
Pr0(s∼it=s|ωt=0)

→ 2−β0
β0

. Now recall that µi =
(

1+ Bi(s0t=s|ωt=0)
Bi(s0t=s|ωt=1)

Bi(s∼0t=s|ωt=0)
Bi(s∼0t=s|ωt=1)

)−1
.

Taking expectations over sit , we find by continuity that

lim
δ→0

E [µi | ωt = rt ] =

(
1
2
+β0

)(
1+(1−2β0)

β0

2−β0

)−1

+

(
1
2
−β0

)(
1+

1
1−2β0

β0

2−β0

)−1

.

Note that limβ0↓0 limδ→0 E [µ0 | ωt = rt ] = 1. Thus, for any ε1 > 0, there exists b̄1 ∈
(
0, 1

2

)
such

that, for any β0 ∈ (0,b), |E [µ0 | ωt = rt ]−1|< ε1.

Now consider the case where rt = 0. By the same logic, we have that, with probability 1,

Bi (s∼0t = s | ωt = 1)
Bi (s∼0t = s | ωt = 0)

=
α0−1+Pr(s0t = 1 | s∼0t = s)

α0−Pr(s0t = 1 | s∼0t = s)
=

α0− 1
2β0− 1

2

α0 +
1
2β0− 1

2

.

It follows that

lim
δ→0

E [µ0 | ωt = lt ] =
1
2

(
1+(1−2β0)

2−β0

β0

)−1

+
1
2

(
1+

1
1−2β0

2−β0

β0

)−1

.

Note that limβ0↓0 limδ→0 E [µ0 | ωt = lt ] = 0. Thus, for any ε2 > 0, there exists b̄2 ∈
(
0, 1

2

)
such

that, for any β0 ∈ (0,b), |E [µ0 | ωt = lt ]−0| < ε2. The desired result then follows from picking
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ε = min{ε1,ε2} and b ∈
(
0,min

{
b̄1, b̄2

})
.

We now prove the main result.

Proof. In the proof of proposition 5, we show that the fraction of periods that agents listen to their

most trusted neighbors approaches one in probability as t→ ∞. In our setup, media outlets choose

their bias to maximize the number of listeners. From lemma 4, we know that the derivative dTi j

d|β j|
does not depend on

∣∣β j
∣∣, hence there cannot be an interior solution where

∣∣β j
∣∣ ∈ (0,1). It follows

immediately that all media choose βm ∈ {−1,0,1}.

By proposition 4, an unbiased agent’s trust always increases in α j. By proposition 5, ∑
t
τ=1 1

{
jUτ ∈ JU}/t→p

1 where jUt is the stochastic sequence of neighbors that U visits and JU is the set of unbiased me-

dia sources. Note that the unbiased media source is fully informative about ωt but uninformative.

By the same logic as proposition 2, µU = ωt for any a ∈
(1

2 ,1
)
.

Similarly, by proposition 4, for any b ∈
(
0, 1

2

)
, there exists a > ψ−1 (b) such that R-biased

agent’s trust increases in β j if a < a. Such an agent has the highest trust for a media source with

β j = 1, which is fully informative about rt but uninformative about ωt . Therefore, by proposition 5,

∑
t
τ=1 1

{
jRτ ∈ JR}/t→p 1 where jRt is the stochastic sequence of neighbors that such an R-biased

agent visits and JR is the set of media outlets with β j = 1. Then by lemma 6, we have that for

any ε > 0 and b > 0, there exists b < b and a ∈
(1

2 ,1
)

such that agent 0’s bias is not extreme and

|E [µ0− rt ]|< ε . The analogous result is true for an L-biased agent.
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