
Firms, Queues, and Coffee Breaks:

A Flow Model of the Corporation

with Human Delays

Benjamin Golub and R. Preston McAfee∗

September 12, 2006

Abstract

The multidivisional firm is modeled as a system of interconnected nodes that exchange

continuous flows of projects of varying urgency and queue waiting tasks. The main innovation

over existing models is that the rate at which waiting projects are taken into processing depends

positively on both the availability of resources and the size of the queue, capturing a salient

quality of human organizations. A transfer pricing scheme for decentralizing the system is

presented, and conditions are given to determine which nodes can be operated autonomously.

It is shown that a node can be managed separately from the rest of the system when all of

the projects flowing through it are equally urgent. The model is also applied to analyze the

efficiency of mergers.

JEL classification: C44, C62, L23, M11, M21.

Keywords: queuing, decentralization, transfer pricing, mergers.

∗Division of the Humanities and Social Sciences, Caltech, Pasadena, CA, 91125. Please direct correspondence to

preston@mcafee.cc.

1

1 Introduction

Since the foundational work of Marschak (1955) and Radner (1959), an active research program has

focused on analyzing the firm as a network of interacting units whose operations can be optimized

for greater efficiency. This paper continues that program by adding certain human elements to

standard queuing models — in particular, the tendency for some resources to be idle even when

tasks remain undone, and for units to work more efficiently when they are busier.

The aim of this study is to examine resource allocation and decentralization in multicomponent

enterprises which handle projects of varying urgency. To this end, we model the firm as a network

of interlinked nodes which process tasks and queue pending jobs. This approach imposes only

weak assumptions about the structure of the corporation. For example, no managerial division is

modeled as being outside the structure of processing. Every operation is viewed as a node, from

assembly lines to legal and human resources departments.

This work extends the value-chain model described by Porter (1985) and the value net of

Brandenburger and Nalebuff (1996), in which products flow through a processing network. Our

insight, which builds on McAfee’s (2002) three-layer model, is that services and administrative

activities can be viewed in a similar light as physical outputs and intermediates — that is, as flows

of jobs or tasks within the firm. For example, production and sale of output generates customer

returns, lawsuits, repeat purchases, and so forth. These tasks generate further tasks — e.g., lawsuits

generate requests for information — which flow around the company. Our major assumption is

that such demands scale linearly. For example, increasing the number of employees increases

demands on the human resources department proportionally. Increasing sales increases customer

returns proportionally. Since tasks are modeled in an abstract way, the model can accommodate

virtually any task repeatedly performed within the company. Indeed, the only major task which

is not modeled is the redesign of the system itself. Since the primitives in this approach are

jobs — i.e., requests for service — flowing through a network of business components, the theory

is consistent with on demand, service-oriented, component-based models of the firm which have

recently appeared in the literature (Fisher et al., 1994; Crawford et al., 2005).

The main innovation of this paper concerns the modeling of the rate at which waiting tasks

are taken into processing. In traditional models of queuing networks, processors are fully occupied,

though there may be delays in switching from task to task (Kleinrock, 1975; Takagi, 1991). These

models are poorly suited to many business operations, in which some processing resources may be

idle even when there are remaining tasks. For instance, airplanes are not filled even when some

passengers desire flights on the same route; employees on a team are temporarily idle while some

tasks remain undone; goods sit in inventory while customer orders are slowly filled. In these cases,

the uptake of projects into processing is delayed, not by a fixed interval of time, but by an amount

that depends on both the scale of unused resources and the magnitude of the queue.

2

There are many reasons for this; we focus on two stylized facts. First, employees tend to be

faster at moving waiting tasks to available capacity when queues are long than when they are

short. That is, workers tend to take fewer coffee breaks when they are busy. Second, uptake of

tasks in human organizations depends on matching them to appropriate resources, which is faster

when there are more unoccupied processors checking for new assignments. A major innovation of

our approach over existing queuing models is that it captures these features of human uptake and

consequently models the dependence of unused capacity on system demand.

The analysis of the model proceeds as follows. In Section 2, we examine the steady state config-

uration of the network and obtain stability results under the variable uptake hypothesis. It is shown

that the system has a unique, locally stable steady state. We then consider the problem of resource

allocation. Value is determined by the speed of task completion moderated by the importance, or

urgency, of the task. This is modeled as follows: the firm is paid per completed project, minus a

penalty that is proportional to the amount of time taken to complete the project. The constant

of proportionality depends on where the project originates and is higher for more urgent projects.

The corporation trades off capacity costs against queuing and delay costs. Increasing capacities

is expensive, but it also shortens queues and allows projects to be processed faster, reducing the

time-penalties. The goal of the firm is to manage this trade-off so as to maximize expected profit.

In Section 3, it is shown that there is a unique set of profit-maximizing capacities, which are char-

acterized with a formula. The formula depends in a straightforward way on urgency variables and

global flows.

In Section 4, we apply the model to study mergers. We posit that two structurally similar firms

(i.e., having the same flow structure) operating in the same business environment are considering

consolidating their operations. They may have different quantities demanded and may be choosing

different levels of investment. The question we ask is: when does a merger result in a firm whose

profit exceeds the sum of the profits of its constituents? The answer is, roughly speaking: as long

as the firms are different enough. In particular, whenever there is a node such that the ratio of

utilized capacity to available capacity differs across the firms, the merger will result in an economy

of scale1.

Next, we ask whether optimal capacities can be set, not via a top-down command system,

but through a balanced transfer mechanism in which individual, profit-maximizing nodes choose

capacities and trade in the same way that the firm as a whole trades with the outside world. In

Section 5, it is shown that this can be done. Unfortunately, there are situations in which the

transfer prices at a particular node depend on what happens elsewhere in the system. Thus, some

nodes must be managed together. Nevertheless, we show in Section 6 that if all the projects which

flow through a node are equally urgent, then the transfer prices it faces depend only on local
1This result relies on one additional assumption, which is stated in Section 4. We also discuss briefly what happens

in more general situations.

3

information, and hence the node may be managed autonomously. We note that there is a way of

looking at this fact from the perspective of system design. If one wants to have nodes managed

locally and autonomously, flows of projects should be divided by urgency, with each flow having its

own dedicated nodes.

The import of these results is that aggregation of several nodes under the same management

is needed only if the situation is fairly complicated: the same components must handle projects

of different urgencies. Business divisions consisting of multiple nodes may then be viewed as

mechanisms for managing this complexity. It follows that managing multiple urgencies or priorities

is a more difficult organizational task than managing similar priority tasks, as the latter type of

management can be decentralized.

Finally, the analysis is applied to the problem of forecasting how changes in demands and prices

affect optimal capacities and how quickly the firm should be prepared to react to such changes.

Thus, the model can be applied to improve responsiveness in a dynamic business environment.

Related Literature

We view the insights of this paper as complementary to several recent papers. Since Radner

(1993), many studies have focused on how to design organizations which process general flows,

such as flows of information or tasks requiring special skills or knowledge. Beggs (2001) considers

a queuing model of task flow in an organization which is assumed to be organized hierarchically.

Abstracting from incentive problems, this study derives optimal organizational structures and dis-

tributions of activities. We believe these insights are valuable, especially in organizing individual

business units, where the particles in the model are people (who report to superiors in a traditional

hierarchy). This model seems less applicable to the more complex organizational structure of mod-

ern, multicomponent corporations; here, relationships between different units are characterized by

many interdependencies, and no clear top-down structure can be assumed. Thus, our paper is

complementary to Beggs (2001) in that it considers optimal interaction on a larger scale.

Another related paper is Arenas et al. (2006). The corporation is modeled as an arbitrary

network of interconnected nodes. Problems arrive from outside the network; each problem can be

solved at exactly one node and must be routed there. The aim of the paper is to derive optimal

network structures when delays are costly. Like Beggs (2001), this study abstracts from incentive

problems, but, in contrast, it allows much more complex network relationships.

The focus of our paper is somewhat different. We do not assume that the corporation has only

one stylized goal (such as routing a problem to a single solver, as above) in order to solve a system

design problem. Instead, we start with a richer and more multifaceted notion of processing. The

same project may need to go through many nodes in a particular order before being discharged,

and each node may need to do something to it. To capture this, we take the structure of processing

4

as given. This seems reasonable since there is such a large variety of possible processing systems;

the routing of projects or demands is often determined by technological constraints exogenous to

the economic model.

Taking the structure of processing as given permits us to consider in some depth the incentive,

pricing, and management problems which are abstracted away in the papers discussed above.

While we agree with Beggs (2001) that these are often peripheral when the units of processing

are individuals (e.g., medical staff in a hospital hierarchy), we think that they are more salient

when the components are business units in a large corporation (e.g., hospitals owned by a parent

company). In particular, we take up the problem of transfer prices from a new perspective. Much

of the work to date in this field, initiated by Hirshleifer (1956) has focused on the interaction

between just two components of a firm2. We broaden the analysis to allow a much more complex,

interdependent structure of interaction. The same is done in Adelman (2006), in which a transfer

pricing system for a complex queuing network is developed. The difference between that paper and

ours is that, by allowing rates of uptake to be smooth functions of available capacity and queue

size, we greatly simplify the analysis and can more explicitly characterize many relationships in the

system and their dependence on the primitives. For example, we consider mergers, an issue not

analyzed in the papers we have discussed.

2 The Basic Model

The model used is a variant of a common queuing model. There are N processing units, called

nodes, whose indices comprise the set V := {1, . . . , N}. The nodes process projects, an abstract

name for whatever objects or tasks move through the system of nodes. In particular instances, these

projects may be computers undergoing assembly, airline customers, administrative assignments in

an office, etc. Node n has pn projects in processing, qn projects in its queue, and a capacity cn,

which is the largest number of projects that can be in processing simultaneously.

Certain nodes can accept projects from outside the system; this may be interpreted as taking

customer orders, receiving regulatory requests for information, and so on. Let the setR ⊆ V contain

exactly those nodes which can accept inflows of projects, and call these the receiving nodes. The

remaining nodes are called internal. Let rn be the number of projects per unit time which enter

the system at node rn. If n /∈ R, then rn = 0. Otherwise, rn is nonnegative and is treated as a

constant until Section 7.

Nodes can also send projects to other nodes. Let Tnm be the fraction of projects in processing

at node n that is sent to node m per unit of time. This rate may be zero or positive, and varies

only in the long term for the purposes of this model. We will assume throughout that Tnn = 0

to simplify some later expressions, though allowing the nonzero case does not change any of the
2See, e.g., Holmstrom and Tirole (1991), Alles and Datar (1998), and Baldenius et al. (1999).

5

results substantially. A positive value of Tnn means that some projects are suspended and placed

back in node n’s queue. Note also that under this model, a single project at node n can spawn

multiple projects at many other nodes. For instance, a single lawsuit spawns production of multiple

documents throughout the entire corporation.

We emphasize that, in our view, it is best to interpret the inflows in this model as demands or

assignments — from customers, partners, regulators, litigants, and other external entities — which

drive further tasks in the firm and may generate revenue. This interpretation is distinct from the

understanding of inflows in a traditional supply chain, where they are simply raw materials. In our

model, raw materials would be procured after the initialization of a project by sending orders to

other nodes.

In addition to transferring projects to other parts of the system, each node also terminates,

or discharges, a certain fraction of its projects, causing them to exit the system. Let dn denote

the fraction of projects in processing at node n that are discharged per unit of time. Assume that

dn > 0 for each n. This will later guarantee that inflow does not accumulate in the system without

bound. An example of the model is illustrated in Figure 1.

Figure 1: A queuing network model. Queues are represented by circles, processors by squares. When

there is no flow from one node to another, we assume the link between them in that direction does

not exist.

This is a standard model of queuing so far3. What is unusual about the model is the transfer
3The network of processing nodes, each having its own queue, is standard in the queuing literature: see, for

example, Kleinrock (1975, 147–160), Lemoine (1977, 466–467), or Bose (2001, 143–150). In each version of the

standard model, a fixed transfer proportion is associated to each ordered pair of nodes; this number describes what

fraction of projects in processing at the first node is transferred to the second per unit of time. In some cases, these

transfer proportions are described as transfer probabilities instead, but this does not significantly alter the model.

Customers arrive with a Poisson distribution into the queue. In all of the models mentioned above, the processor is

assumed to be fully occupied, which makes the rate of uptake from the queue discontinuous.

6

from queue to processing. In particular, this takes place at a rate that depends on the size of the

queue qn and the excess capacity cn − pn; the transfer flow is

qn(cn − pn)
anqn + bn(cn − pn)

,

where an and bn are two positive constants.

This rate can be derived from the following two-stage description of the transfer mechanism.

The first step is a preparation process that is required to go into processing: for instance, a customer

being issued a ticket by an airline, a manager approving a programming project, or a shipping clerk

signing off on a shipment. A tendency of human organizations is to become faster and more efficient

at moving waiting projects to available capacity when lines are longer. At busy times, ticket agents

work more quickly, appointments are scheduled more tightly, and so forth. We assume that the

length of the preprocessing lag per project varies inversely with the length of the queue, i.e. it is

equal to bn/qn, where bn is some constant4. After this, processing occurs as soon as the appropriate

type of service becomes available. For instance, a package being shipped remains in storage until

the next pickup occurs; a customer referred to a particular kind of technical support technician

must wait until the next one becomes available, etc. There are cn − pn available severs. Assume

they check for new projects at intervals having some distribution with mean an (the accommodation

delay). Then, by Little’s Law (Little, 1961), the average waiting time is an/(cn − pn). Summing

the delays and inverting to obtain the flow suffices to give the rate above. This rate has two useful

features. First, in contrast to other queuing models, it is smoothly differentiable in both endogenous

variables qn and pn. Second, it is always less than the smaller of the preprocessing rate qn/bn and

the accommodation rate (cn − pn)/an.

The transfer from queue to processing contrasts with existing models in which processors are

fully occupied (Chandy et al., 1975; Lemoine, 1977; Bitran and Dasu, 1992; Bose, 2001). Here, the

uptake of projects into processing is approximately proportional to available resources — excess

capacity accelerates the movement of projects into processing, as do increases in queue size. More-

over, there is a real distinction between projects in process and in queue. In contrast, models in

which the processor is always fully occupied present no real distinction between being in process

and being in queue. In our view, excess processing capacity even when the queue is not empty is a

characteristic of humans, but not of computer processors, so the model is a better model of firms

(which is the intended application) than of machine networks.
4One explanation for this form is as follows: individual employees work under limited time horizons; for instance,

their goal is to empty the projects that are queued up in the morning by the day’s end, or face a costly reprimand by

supervisors. Then, if the queue increases by a factor of k, it is necessary to reduce the preprocessing lag by a factor

of k to achieve this goal.

7

The description of processing entails rates of change in the endogenous variables of

ṗn = −dnpn − pn

N∑
m=1

Tnm +
qn(cn − pn)

anqn + bn(cn − pn)
, and (1)

q̇n = rn +
N∑

m=1

Tmnpm − qn(cn − pn)
anqn + bn(cn − pn)

. (2)

The flow into pn is comprised exclusively of projects in the queue of node n, and by hypothesis

this flow is the positive term in (1). The flow out, again by assumption, is proportional to pn; per

unit of time, the fraction dn of the amount pn leaves the system, and the fraction Tnm flows to the

queue m. Similarly, projects from outside the system arrive into queue n at a rate rn. The rest of

the expression for q̇n is just the flow from within the system, determined by consistency with the

processor equations.

2.1 Steady State Analysis

Observe that the total rate of change in the number of projects at node n is

ṗn + q̇n = rn +
N∑

m=1

Tmnpm − dnpn − pn

N∑
m=1

Tnm.

Thus, in the steady state, when ṗn = q̇n = 0, we have

p∗n

(
dn +

N∑
m=1

Tnm

)
= rn +

N∑
m=1

Tmnp∗m, (3)

where p∗n is the steady state process size at node n. For each node n, define a constant µn :=

dn +
∑N

m=1 Tnm. This shorthand transforms (3) into

µnp∗n = rn +
N∑

m=1

Tmnp∗m. (4)

The constant µn can be interpreted as the total rate of outflow from node n divided by the number

of projects at node n. Defining M as the N ×N diagonal matrix with µn in the (n, n) position for

each n, the previous equation becomes5 (
M−TT

)
p∗ = r. (5)

As the proof of Theorem 1 will show, the matrix M − TT is invertible, and the inverse has non-

negative entries, which gives a nonnegative solution for the steady state process sizes:

p∗ =
(
M−TT

)−1
r. (6)

5Given an N ×N matrix X, we denote the entry in the (i, j) position by Xij . Conversely, given an indexed set of

N2 values {Xij}1≤i,j≤N , we denote by X the N ×N matrix with Xij in the (i, j) position. The notation is analogous

for vectors, but only one index is used.

8

We will assume, without loss of generality, that p∗n 6= 0 for each n; any nodes failing this condition

may simply be neglected in the analysis, since they do not have any effect on the system.

An important simplification is embodied in this expression: the steady state processing levels

are independent of the capacities. This may seem peculiar but is actually quite sensible. In the

steady state, the inflow must equal the outflow at each node, and the inflow is not affected by the

capacities, but instead is determined by the inflows r and transfer rates T. If the capacities are

less than the steady state process size values, then no steady state exists.

Note also that the matrix in (6) contains interpretable information about the system. Write

S :=
(
M−TT

)−1 for brevity and let the entry of this matrix in the (n, m) position be denoted,

as usual, Snm. Then (6) entails that Snm = ∂p∗n/∂rm, i.e., the constant rate of change of the nth

process size with respect to mth inflow. Additionally, we will define the elasticity of the nth process

size with respect to the mth inflow as

εnm :=
rm

p∗n
· ∂p∗n
∂rm

=
rmSnm

p∗n
.

The elasticity will prove to be important in characterizing optimal capacities.

The steady state queue sizes q∗1, . . . q
∗
n can be readily determined using

0 = q̇n = rn +
N∑

m=1

Tmnp∗m − q∗n(cn − p∗n)
anq∗n + bn(cn − p∗n)

.

Using (4), this can be rewritten as

q∗n =
bnµnp∗n(cn − p∗n)

cn − p∗n(1 + anµn)
. (7)

Theorem 1. There is a steady state if and only if cn > p∗n (1 + anµn) for each n. If so, the steady

state occurs uniquely at process sizes p∗ and queue sizes q∗ and is locally stable.

All proofs can be found in the appendix. We will denote by D the set of N -tuples of capacities

which satisfy the condition stated in the theorem, i.e. those which correspond to steady state

configurations.

Our analysis in the remainder of the paper is in steady state (an assumption which we will,

for brevity, not state explicitly in every result). In this, we follow the standard approach used in

Beggs (2001) and Arenas et al. (2006). Since the steady state is locally stable, we can expect it to

persist once established, and so the system will spend a large fraction of the time in this regime.

This justifies the attention the steady state receives in our analysis.

Taking the partial derivative of q∗n with respect to the capacity cn shows that steady state queue

size is a strictly decreasing function of capacity if the steady state condition given in the theorem

is met.

9

It is also interesting to note that the expression for the minimal required capacity is purely

local as long as the steady state process size p∗n is known. In a stable system, this steady state

process size can be directly observed. From this point, one only needs the product anµn at node n

in order to compute the minimal capacity near which the queue at n becomes huge and the steady

state of the entire system breaks down. The relatively modest number of inputs for this calculation

is convenient in situations where capacity must be quickly reduced (perhaps due to an emergency

or an unexpected increase in costs). An operator of a node — even one with information about

only that node — can determine completely locally and fairly simply how low the capacity can get

without destroying the equilibrium for the entire system. More details on estimation procedures

are in Section 8.

Example. In Figure 2, we present a particular example of a network which will be used to illustrate

the analysis. The example represents a simple version of a firm that builds customized computers

on demand and then provides customer service for those who buy them. The projects in this

context are customer requests: either for new computers or for service on existing ones.

There are two receiving nodes, Order Taking and Customer Service. The former receives orders

for new computers and the latter takes requests for repairs and other assistance. Of the projects

that come through Customer Service, 5% are mistakes, and are actually intended for Order Taking.

Similarly, 5% of the projects going through Order Taking are properly routed to the Customer

Service department.

Customer Service discharges 65% of its projects after handling them. The 30% of projects that

remain are routed to the Assembly department, which performs more extensive service, as discussed

below.

The projects arriving at Order Taking which are not misrouted Customer Service requests go

to Assembly (where they join Customer Service requests that require repairs). Assembly orders

components from two Parts Procurement nodes, which fulfill the orders and route the projects back

to Assembly. All projects have to go Node 5, but only 85% have to go to Node 4. Finally, Assembly

sends projects to Quality Assurance. There, 97% of them are discharged, and 3% of computers are

defective and are sent back to Assembly for repair.

The transfer matrix associated to the firm is

T =

0 .05 .95 0 0 0

.05 0 .30 0 0 0

0 0 0 .85 1 1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 .03 0 0 0

.

10

Figure 2: A particular network which will be used to illustrate the analysis. This example corre-

sponds to a simple version of a build-on-demand firm producing computers, which serves individual

consumers. Arrow labels without units are the proportions of projects at the originating node flow-

ing out per unit of time (here, the time units are hours).

11

The inflows are r1 = 50, r2 = 30, with the rest set to zero. The discharge rates are

d = (ε, .65, ε, ε, ε, .97)T ,

where ε = 10−4 is a small parameter which is nonzero for technical reasons. This corresponds to

some projects being terminated at each node with small probability. Using (6), we compute

p∗ = (52, 33, 61, 52, 61, 61).

These are the steady state process sizes.

We will return to this example again.

Completion Times

While the number of projects in processing is invariant to capacity in the steady state, the size

of the queue is not — increases in capacity reduce queue length and hence reduce the time to

completion. Let tn be the average total amount of time necessary to process a project that enters

at node n, and let the column vector of all these values be denoted t. In steady state, q̇n = 0 means

that the outflow of queue n is rn +
∑N

m=1 Tmnp∗m = µnp∗n, where the last equality follows by (4).

The amount of time a project spends in queue n is the size of the queue divided by the outflow,

that is,
q∗n

µnp∗n
=

bn(cn − p∗n)
cn − p∗n(1 + anµn)

,

which is obtained using (7). Similarly, the amount of time a project spends in processing at node

n is
p∗n

µnp∗n
=

1
µn

.

Thus, the time spent at node n is

τn :=
1
µn

(
q∗n
p∗n

+ 1
)

=
1
µn

[
bnµn(cn − p∗n)

cn − p∗n(1 + anµn)
+ 1
]

. (8)

When processing is finished, a given project may be sent to other nodes. The contribution to the

average total time associated with the projects sent to node m is tm multiplied by the probability

that a random project is sent there, namely Tnm/µn. This gives a recursive equation for the amount

of time required to process a project:

tn =
1
µn

(
q∗n
p∗n

+ 1
)

+
N∑

m=1

Tnm

µn
tm

=
1
µn

[
bnµn(cn − p∗n)

cn − p∗n(1 + anµn)
+ 1
]

+
N∑

m=1

Tnm

µn
tm. (9)

12

Define the column vector z so that, for each n,

zn :=
bnµn(cn − p∗n)

cn − p∗n(1 + anµn)
+ 1.

Then equation (9) assumes the matrix form

(M−T)t = z.

By the proof of Theorem 1, (M − TT)−1 is invertible and has strictly nonnegative entries. Note

that (M − TT)−1 =
[
(M−T)T

]−1 =
[
(M−T)−1

]T
. Taking transposes, (M − T)−1 also exists

and has nonnegative entries. Thus, there is a well-defined, nonnegative solution for the completion

times, given by

t = (M−T)−1z. (10)

3 Optimal Capacities

The objective of the corporation is to maximize the average profit accumulated per unit of time.

Revenues consist of payments for the completion of projects that are ordered at each node; the

price paid to the corporation for projects that originate at node k is ρk per project. Costs are of

three types. The first two are costs of capacity and of queues; we assume capacity at node k has

a constant marginal cost ωk > 0, and the queue has a constant marginal cost γk, both in units of

money per project per unit of time. The third type of cost arises from delays in project completion.

Assume that if a project originating at node k takes θk to complete, the corporation pays a time

premium fk(θk), in units of money per project. This description entails the following profit function

for the firm:

π =
N∑

k=1

[ρkrk − ωkck − γkq
∗
k − rkE(fk(θk))] . (11)

When inflows and transfer rates are fixed, the only endogenous variables in the equation are capac-

ity, queue size, and time to completion, so the profit may be maximized by choosing the capacities

c to minimize the variable cost

K(c) =
N∑

k=1

[ωkck + γkq
∗
k + rkE(fk(θk))] . (12)

In this model, the cost of delays is linear in their length. This is relevant in the short and

medium term, when immediate factors, as opposed to long term discounting, impose the most

significant costs. For example, machines elsewhere sit idle while the firm produces a custom-made

input or component, imposing on the corporation a per-day opportunity cost arising from the

foregone output. Clients requiring a particular product must rent the next best alternative until

the product is delivered. To the first order, we model these costs as a linear function of the mean

13

delay time, so that fk(θk) = βkθk for a constant βk, which we call the urgency of projects originating

at node k (or the urgency at node k for short). Then, given any distribution on completion times

with mean tk, it is easy to see that E(fk(θk)) = βktk.

The main result of this section entails that the optimization problem facing the firm always has

a unique solution with an interpretable characterization.

Lemma 1. The global minimum of the total cost K as a function of the capacities c over the

domain D of possible steady-state configurations occurs uniquely at a vector of capacities c∗, which

can be calculated explicitly from the primitives of the system. These capacities are

c∗n = p∗n (1 + anµn)

+ µn

[
anbnp∗n

ωn

(
γnp∗n +

N∑
k=1

Snkβkrk

)]1/2

. (13)

Note that the cost-minimizing set of capacities explicitly exceeds the corresponding minimal

steady state capacity as characterized in Theorem 1.

Rewriting the formula for the optimal capacities c∗ in (13) yields an interpretable version of

the condition for optimality. Using the fact that Snk = ∂p∗n/∂rk, we find that the capacities are

optimal exactly when, for each n,

ωn =
an

bn
· (q∗n)2 ·

(
γn +

N∑
k=1

εnkβk

)
.

That is, optimal capacities occur when, at each node n, the marginal cost of capacity is equated the

product on the right hand side. The first factor of this product is the ratio of preprocessing delay to

uptake delay — or, if the two-stage interpretation from Section 2 does not apply, merely a constant

parameter pertaining to node n. The second factor is the queue size squared. The third factor is

the marginal cost of the queue at node n plus the elasticity-weighted sum of the urgencies at all

the receiving nodes. This is an attractive equation because its components are readily estimated,

especially with the aid of enterprise resource planning software. Further discussion of estimation

procedures can be found in Section 8.

Example. We continue the example introduced in Section 2. First, we specify the uptake param-

eters a and b, as well as costs. After discussing what these quantities mean in the context of the

example, we use them to calculate optimal capacities.

Set a and b as shown in Table 1. Recall that an is the time it takes a typical server at node n to

check for a new project. This is short for Order Taking and Customer Service (under a minute), and

six minutes at Parts Procurement. It is longer at Assembly and Quality Assurance – specialized

workers check for new assignments about every ten minutes when idle.

The parameters bn correspond to preprocessing delay. When bn is nonnegligible, we set it so

that the average preprocessing delay when the queue is on the order of 100 projects is on the order

14

Node Accommodation Preprocessing

Delay, a Delay, b

Order Taking .01 .01

Customer Service .01 2

Assembly .15 5

Parts A .10 .01

Parts B .10 .01

Quality Assurance .15 5

Table 1: The accommodation and preprocessing delays.

of minutes. Preprocessing is fairly fast at Customer Service (a little under a minute per project

when there are 100 projects queued). It is longer at Assembly and Quality Assurance (about 3

minutes per project when 100 projects are queued). Preprocessing is essentially instantaneous at

Order Taking and Parts Procurement, where it is automated.

We briefly discuss what preprocessing means in the context of the nodes in this example. At

Customer Service, it consists of identifying the type of problem a customer is having and routing the

customer to a specialist on that kind of problem within the Customer Service node. At Assembly,

preprocessing consists of reviewing the customer’s order to verify that it makes sense and assigning

it to an appropriate assembly location. At Quality Assurance, preprocessing consists of moving a

computer to an expert who will test it.

Next, we define the revenues per project. Set ρ1 = 1500 and ρ2 = 0. That is, customers pay

$1500 for the average new computer, and customer service is free. Urgencies are β1 = 2 and β2 = 3

— it costs the corporation about $50 per day in lost future business to delay a computer delivery

and $75 per day to delay a customer service request.

Node Capacity Queuing

Cost, ω Cost, γ

Order Taking 1 1000

Customer Service 10 1000

Assembly 50 0.1

Parts A 20 0.1

Parts B 20 0.1

Quality Assurance 35 0.1

Table 2: The capacity and queuing costs.

15

The costs of capacity and queuing are set as shown in Table 2. The entries of the vector ω are

the daily costs of employing one sever at each node. A computer which takes orders costs $1 per

hour per project, whereas a skilled assembly worker has wages of $50 per hour.

The queuing costs γ1 and γ2 correspond to the costs in dollars (per project per hour) of keeping

customers waiting in queues at Order Taking and Customer Service. We posit that keeping a

customer waiting on the telephone for a fraction x of an hour will result in $1000x lost future

profits for the firm. The other queuing costs are quite low, corresponding to the cost (per project

per hour) of maintaining warehouses where partially assembled computers wait. Note that queuing

costs can be of two types — opportunity costs to the firm of making customers wait in a particular

line, or physical maintenance costs when queues are just warehoused merchandise. The reason

that the first type of cost is not included in the urgency parameters is that it is not a cost of

delaying project completion, but the cost of making a customer wait in a particular queue. That is,

a customer may not mind if the project takes 3 days to finish and ship, but may object to being

put on hold on the telephone for 30 minutes.

Figure 3: The process sizes and optimal capacities in the example.

We can now compute c∗ using (13). The steady state process sizes (computed in Section 2) and

capacities are plotted in Figure 3 and recorded in Table 3, along with the queue sizes.

Note that the capacities can be significantly larger than the process sizes at the same nodes.

This may seem odd in light of the fact that capacity is often quite expensive. The explanation is

that idle processors do not check for new projects instantly. To avoid bottlenecks, there must be

enough available processors at any given time to ensure a sufficiently high rate of uptake from the

queue.

We will return to this example again.

16

Node Steady State Optimal Percentage Steady State

Process Size Capacity Excess Capacity Queue

Order Taking 52 68 25% 1

Customer Service 79 375 58% 66

Assembly 61 118 49% 1565

Parts A 52 57 10% 5

Parts B 61 67 10% 6

Quality Assurance 83 155 27% 509

Table 3: The process sizes, optimal capacities, and queue sizes in the example.

4 Mergers

The framework we have developed allows us to analyze mergers. The main question we ask is how

to decide whether a merger between two similar firms will allow the combined firm to achieve profits

exceeding the sum of the two constituents’ profits — i.e., when it will lead to an economy of scale.

To this end, we assume that we have two firms, with flow matrices T and T̂, which are equal.

We also assume their costs (of queuing, capacity, etc.) are equal. One way to interpret these

assumptions is to say that the two firms are engaged in essentially the same business and have the

same structure. Inflows and capacities, however, may be different — i.e., the firms receive different

orders and may have chosen different levels of investment. For tractability (in this section only),

we assume βn = 0, for each n, so that costs of time are factored into the γn, which are the queuing

costs6.

We ask what happens when we merge the two firms, combining inflows and processing units. For

instance, whereas before the two firms had separate customer service departments which processed

separate streams of requests, we now combine these departments into one merged customer service

department processing a single stream of requests. The same is done with each division. What can

we say about the profits of this new firm?

In the discussion and the proof of the main theorem, we will write quantities associated with

the first firm as before, e.g., p∗n, cn, etc. The quantities associated with the second firm will be

written as p̂∗n, ĉn, etc. The quantities associated with the merged form will be written as p̄∗n, c̄n,

etc.

In merging, we assume inflows are combined, i.e., for each n ∈ N we have r̄n = rn+r̂n; capacities

are also combined, so that c̄n = cn + ĉn. Then we have the following result.

6It is possible to extend this analysis to the variable-urgency case, but the results are less simple and depend more

intricately on the precise cost structure.

17

Theorem 2. Let T and T̂ be identical flow matrices for two firms, and let costs be equal for the

two firms. Also assume βn = 0 for each n. Then, at each node, the queue of the merged firm is

weakly smaller than the sum of the queues of the merging firms. That is, for each n ∈ N , we have

q̄n ≤ qn + q̂n.

Moreover, the inequality is strict unless
pn

cn
6= p̂n

ĉn
.

Corollary 1. Under the assumptions of the previous theorem profit weakly exceeds the sum of the

constituent firms’ profits. It strictly exceeds the sum of the constituent firms’ profits if and only if

there is some node n ∈ N such that
pn

cn
6= p̂n

ĉn
.

That is, the only situation in which a merger fails to increase profits is one in which the ratio

of used capacity to available capacity (in steady state) is the same across the firms at each node.

Essentially, there are no improvements in efficiency only when the firms merging are scalar multiples

of each other.

We note that, in the special case we are considering, mergers between firms operating at optimal

capacities as dictated by (13) will always result a firm whose profit is the sum of the profits of its

constituents. However, this is not so when urgencies are allowed to vary, and even mergers of

optimally investing firms can produce economies of scale.

There are several insights to be drawn from Theorem 2 and its corollary. First, mergers can

be beneficial even when the external environment in which the firms operate does not change.

That is, in the situation outlined here, costs of capital and labor remain the same, and there is no

increase in demand (due to better advertising, for example). Additionally, the network structure

does not change. Nevertheless, merging the two firms leads to better utilization of resources if the

hypotheses of the theorem hold.

Second, differences between the two firms drive the improvement in profits effected by mergers.

When ratios of utilized capacities differ, the whole is more profitable than the sum of the parts.

Moreover, as the proof of the theorem shows, the bigger the difference between pn/cn and p̂n/ĉn,

the bigger the improvement is. It is worth noting that this does not depend on the optimal capacity.

That is, the theorem holds even when both firms have too much capacity at a given node, or too

little.

5 Transfer Prices

The modern corporation is an aggregation of semi-autonomous business units, which trade with

each other as well as with the outside world. The problem of transfer pricing is to identify prices

18

for the internal node-to-node transactions so that the decisions made by the business units are

efficient. In the context of the present model, we ask when a balanced transfer pricing scheme7

exists so that each node, if operated as an autonomous, profit-maximizing business unit, chooses

efficient capacities. It turns out that such a pricing system always exists, and, surprisingly, the

transfer prices are independent of the uptake parameters at the individual nodes.

Let node m pay node n a price λmn per project sent from node m to node n, minus a penalty

for delays at node n in processing the assignment. This penalty accumulates at the rate χn per

unit of time per project, which we will call the internal price of time at node n. Node n pays for

its own capacity and queue. Moreover, it receives the price ρn per project that enters at node n

from the outside, minus the cost of the delay to the corporation: namely, βnθn for a project that

takes θn to exit the system entirely. Since the mean time to completion for such projects is tn, the

expected time premium is βntn per project. For the purpose of discussing internal transfer prices

at node n, we can clearly assume that there is some m such that Tmn 6= 0. If not, then no internal

transfer prices are needed at node n, since it receives no inflow from within the system.

Each node is assumed to maximize the expected local profit. The description above entails that

this profit is

πn = ρnrn − βnrntn − wncn − γnq∗n +
N∑

m=1

(λmnTmnp∗m − χnτnTmnp∗m)

−
N∑

m=1

(λnmTnmp∗n − χmτmTnmp∗n) .

(14)

Since node n has control only over the capacity cn, maximizing πn is equivalent to minimizing the

sum of the costs at node n that depend on cn, which we will call Kn. Note that

Kn(cn) = ωncn + γnq∗n + βnrntn +
N∑

m=1

χnτnTmnp∗m

= ωncn + γnq∗n + βnrntn + χn (µnp∗n − rn) τn, (15)

where we have used the fact that Tnn = 0 and (4).

Optimal internal prices of time χn would equate the capacity c†n which minimizes the local

cost Kn (if such a capacity exists) to c∗n, the capacity at node n in the solution to the global cost

minimization problem, which we found in Section 3. It turns out that there is indeed a unique

capacity c†n which minimizes local cost, and there are prices that make it equal to the globally

optimal capacity c∗n. This is the content of the following result.

Theorem 3. Local managers will maintain optimal capacities if and only if

χn =

∑
k 6=n εnkβk

1− rn/(µnp∗n)
. (16)

7That is, a mechanism such that if node m pays an amount α for some task performed by node n, then node n

receives α, without any corporate division absorbing surpluses or compensating for shortfalls.

19

These prices create a balanced transfer mechanism within the corporation.

The formula for the prices on time immediately yields the following.

Corollary 2. The prices on time which induce optimal capacity choice are always invariant to the

uptake parameters a and b, as well as to all the capacities.

As a consequence, individual operators can restore optimal capacities in response to changes in

uptake speeds at their nodes without any outside interference, and upper management can ignore

uptake rates altogether. This is felicitous because it corroborates a commonly cited reason for

granting autonomy to managers of business units: their ability to deal independently and efficiently

with local adjustments.

The formula in Theorem 3 for the optimal internal price of time at node n is interpretable. The

price should be set to the quotient of the two quantities on the right hand side of (16), each of

which is economically meaningful. The numerator is the elasticity-weighted sum of the urgencies

at nodes other than n. To interpret the denominator, recall from (4) that µnp∗n is the total rate of

flow through node n, so that rn/(µnp∗n) is the fraction of inflow that enters node n from outside

the system. Therefore, the denominator is simply the fraction of inflow coming into node n from

inside the system.

What is remarkable about this result is that the quantities involved are so accessible. Elastici-

ties and urgencies are readily observable, especially in the context of enterprise resource planning

software, as is the fraction of tasks coming into a certain node from inside the system. Thus, the

transfer prices are a particularly implementable result of this analysis.

6 Decentralization

In this section, we will be working in the regime of the short or medium term, in which the transfer

rates T — which encode the structure of the system — remain fixed, but the inflows r can vary.

The optimal transfer prices at any node obtained above depend on the entire vector r of inputs.

Consequently, the setting and updating of transfer prices cannot generally be accomplished locally,

but instead depends on global information. In this section, we consider when the transfer prices

facing a particular node depend only on local information. In such cases, we will say that the node

can be managed locally.

Another definition will help to streamline the statement of a sufficient condition for decentral-

ization. We say node m influences node n if ∂p∗n/∂rm = Snm 6= 0, i.e., if changes in the inflow at n

affect the process size at m. There is an easy way to decide whether one node influences another.

Lemma 2. Node m influences node n (such that n 6= m) if and only if there is a sequence of nodes

n1 = m, n2, n3, . . . , n` = n

20

such that Tnjnj+1 > 0 for all 1 ≤ j < `. That is, node m influences node n if and only if, in the

weighted directed graph corresponding to T, there is a directed path with positive edge weights from

node m to node n.

We can now state the main result:

Theorem 4. A node can be managed locally if all the receiving nodes that influence it have the

same urgency.

If all the receiving nodes which influence node n have the urgency β̂n, then the proof of the

theorem shows that

χn =
β̂n − εnnβn

1− rn/(µnp∗n)
.

If, moreover, node n is internal, so that rn = 0 it follows that εnn = 0 and the above expression

takes on the particularly simple form χn = β̂n. That is, the internal price of time at an internal

node is just the urgency at the nodes that influence it.

This suggests that when the internal price of time at node n differs from the urgency of the

nodes that influence it, the difference exists to account for the additional incentives due to the

projects entering node n from outside the system. In particular, recall that when a project enters

the system at node n, the node gets paid for the completed project, minus a penalty that depends

on how long the project takes to exit the system entirely. This penalty provides an incentive for

node n to reduce its own contribution to the total time. This external incentive to work faster,

arising from the penalty charged by the outside customer, reduces the internal time costs which

must be imposed to get the node to work at the correct speed.

More broadly, these results yield insights about aggregating multiple nodes into business divi-

sions. In particular, Theorem 4 shows that such aggregation is needed only if inflows of projects

with different urgencies influence the same node — that is, if a single supply chain handles tasks of

varying urgency. In this case, managing many nodes together may be necessary, because this allows

the operator to adjust the price of time at each node in response to changes elsewhere throughout

the system. On the other hand, when all the receiving nodes that influence a given node have the

same urgency, all the information needed to set the internal price of time is transmitted through

the local process size — and for internal nodes, even this is not needed.

There is a way of looking at this result from the perspective of system design. If one wants to

have nodes managed locally, flows of projects should be divided by priority; projects with a given

urgency should go through nodes that handle only projects with the same urgency.

Theorem 4 can also be interpreted to say that managing companies engaged in tasks of differing

urgencies is harder than managing companies with a single urgency level, for management can be

decentralized in the latter but not generally in the former. This, in turn, provides a formal basis for

Michael Porter’s admonition against companies becoming “stuck in the middle” by striving to serve

21

both high-value and cost-sensitive customers Porter (1985). Serving cost-sensitive customers entails

relentless pressure to minimize cost, while providing high value will often require fast response to

customer inquiries and needs. In the context of the theory, these customer segments represent

different urgencies and hence are difficult to manage together.

Example. Continuing the previous example, we compute the transfer prices and delays at the

nodes in the system. These are shown in Table 4. Note that the prices on time are the same at all

internal nodes, but vary when there is some inflow. This fits with the discussion of the incentive

role of the local price of time in this section — in particular, how it changes when the node is

incentivized by time penalties from outside customers.

Node Local Price Time Spent Time to

of Time in Queue Completion

Order Taking 2.77 0.01 39

Customer Service 1.94 2.01 17

Assembly 2.18 9.06 —

Parts A 2.18 0.10 —

Parts B 2.18 0.10 —

Quality Assurance 2.18 9.39 —

Table 4: The local price of time and the delays in the system.

Mean time to completion is about two days for projects originating at Order Taking. It is a

weighted average of two days and a few hours at Customer Service — recall that some projects are

discharged immediately, while others go into the Assembly node.

Since β1 6= β2, and both Order Taking and Customer Service clearly influence all internal nodes

(by Lemma 2), it is not possible to decentralize the system. Different urgencies at Order Taking

and Customer Service cause externalities to each other.

7 Response to External Changes

An important question facing modern enterprises is how to respond flexibly and efficiently to

frequent changes in demands and prices (Fisher et al., 1994; Crawford et al., 2005; Cherbakov

et al., 2005). Indeed, this challenge has driven new, service-oriented, on demand approaches to

production, resulting in firms well approximated by our model. Thus, it is natural to consider how

a system responds to external changes in the context of the theory.

There is a way to analyze this question using the results we have derived above. In Section

5, we described a mechanism to translate the global incentives facing the firm into local transfer

22

prices. Once these prices are known, they determine each node’s profit-maximizing behavior —

in particular, the investments it makes in capacity. Consequently, to describe the corporation’s

response to external changes, it suffices to characterize how they affect the local transfer prices.

Such a characterization would capture how demand shocks and price shifts alter the priorities, and

hence the behavior, of each part of the firm.

Theorem 5. The marginal change in the internal price of time at node n caused by a change in

inflow at a node m 6= n is:
∂χn

∂rm
=

1
p∗n

· ∂p∗n
∂rm

· βm − χn

1− rn/(µnp∗n)
.

This rate of change is directly proportional to βm − χn, which is the amount by which the urgency

at node m exceeds the current internal price of time at node n.

The marginal change in the internal price of time at node n caused by a change in inflow at

node n is given by
∂χn

∂rn
=

1
p∗n

· χn(1/µn − ∂p∗n/∂rn)
1− rn/(µnp∗n)

.

In particular, the internal price of time at node n is nonincreasing in inflow at node n.

First, this theorem shows that the internal prices on time obtained in Section 5 are quite natural.

Increasing the inflow of projects (at a location other than node n) that have a higher urgency than

the current internal price of time at node n increases the price of time at node n. On the other

hand, increasing the inflow of projects that have a lower urgency than the current internal price of

time at node n decreases the price of time at this node. Moreover, the magnitude of the change in

each case is proportional to the magnitude of the difference between the current internal price of

time and the urgency of the increasing flow.

The reason for the second part of the theorem — that the internal price of time at node n is

nonincreasing in inflow at node n — is similar to the explanation after Theorem 4. Increasing the

inflow at node n increases the external incentives to work quickly (since the node has to pay the

corporation’s delay costs for a larger share of projects), which reduces the need for high internal

prices on delays.

Theorem 6. The marginal change in the internal price of time at node n caused by a change in

urgency at a node m 6= n is
∂χn

∂βm
=

εnm

1− rn/(µnp∗n)
.

The marginal change in the internal price of time at node n caused by a change in urgency at node

n is given by
∂χn

∂βn
= 0.

These formulas are interpretable. The quantity ∂χn/∂βm is just the elasticity of the nth process

size with respect to the mth inflow divided by the fraction of the projects that enter node n from

23

within the system. It is also easy to see why χn should be invariant to βn. Since all the extra delay

costs arising from increases in the urgency at node n are already paid by node n to the outside

customer ordering the project, it is not necessary for this extra incentive to be conveyed through

internal transfer prices.

8 Remarks on Implementation of the Analysis

To test and apply this model empirically, it is necessary to obtain estimates for the vectors of

input parameters: r, d, c, the matrix T of transfer rates, and the uptake parameters a and b.

Fortunately, all of these can be observed, albeit with varying degrees of difficulty.

To start the analysis, it is necessary to identify nodes. This is probably done using a company’s

enterprise resource planning software, tracking the unit level of that software. These component

units are, in turn, delineated using approaches such as those outlined in Parnas (1972), Hagel and

Singer (1999) and Cherbakov et al. (2005). The rate parameters, namely r, d, and the transfer

proportions per unit time in the matrix T, can be observed simply and directly. For instance, to

find the inflow rate rn, one simply picks a convenient measuring interval and monitors how many

projects flow into a given node during that time, dividing by the interval length to find the rate. To

measure Tnm, one similarly tracks the number of projects per unit time that flow from node n to

node m, dividing by the total number of projects in processing at node n. All such measurements

are done many times and averaged. The capacities c can also be directly observed by noting the

maximum number of projects that could be handled simultaneously at the node. If the values of p∗

or q∗ are desired as a means of testing the theory, they can often be observed by direct inspection

of the number of projects being processed and waiting in line, respectively. Alternatively, p∗, q∗,

and c can be estimated by fitting the model to the data generated by the flow of tasks and their

resolution — i.e., processing times, profits, etc.

At several points in the analysis, we made use of the elasticities of process sizes with respect to

inflows. Recall that these were defined as

εnm :=
rk

p∗n
· ∂p∗n
∂rm

.

To find this quantity, it is necessary to measure or calculate ∂p∗n/∂rm. This can be done by

taking many measurements of ∆p∗n/∆rm — that is, the change in the nth process size brought

about by a change in tne mth inflow — for small changes in rm. Alternatively, we can recall that

Snm = ∂p∗n/∂rm, and that S can be obtained by inverting M −T, whose entries we have already

seen how to measure.

The moderately challenging quantities to observe are the uptake parameters a and b. There are

two approaches to this problem. First, consider the situation in which the description of processing

given in Section 2 is reasonable in the context of the particular system, and the lag times can

24

be observed. Then bn can be found as the slope of the line which best approximates the plot of

preprocessing delay versus 1/qn for different configurations of the system. The parameter an can

be determined analogously by fitting a line to the plot of loading delays versus 1/(cn − pn).

On the other hand, the lag times may be difficult to measure. In that case, more general fitting

procedures can be used. In particular, one would collect readings of cn, pn, qn, and the uptake rate

in various configurations of node n, and then use standard statistical tools to find the values of an

and bn so that the uptake rate is well approximated by

qn(cn − pn)
anqn + bn(cn − pn)

.

Finally, it may be desirable to measure completion times t to find out whether the model

produces reasonable predictions. This can be done by tracking projects and recording where and

when they enter and exit the system. Often, this can easily be accomplished through ticketing or

timestamping, depending on what is moving through the system.

9 Conclusion

In order to model the problem of optimally allocating resources in a firm, we have presented a flow

model of corporations based on queuing of tasks and delayed uptake. The perspective of the model

is that most of the tasks performed by companies can be treated in a similar way: as generating

activity of processing nodes or workstations, after some time spent in queue. Delayed uptake from

the queues, because it makes processes continuous, actually simplifies standard queuing models

dramatically.

We derived the optimal capacities in the context of the model. These satisfy an interpretable

elasticity condition which is, at least in principle, implementable. Moreover, such an implementation

is quite reasonable in the context of enterprise resource planning software such as that offered by

SAP, Oracle, or Great Plains.

We investigated two large questions about the model. First, when do transfer prices exist that

induce autonomous node operators to choose efficient levels of investment? The surprising answer

is: always. Moreover these transfer prices are independent of many of the system primitives and

are characterized with a simple, directly implementable formula. Second, we considered when

these prices depend only on local information; that is, when can the system be decentralized?

Decentralization is possible when a node shares the same urgency as its neighbors. The sharing

of urgency is clearly necessary for decentralization since different urgencies will cause externalities

to each other. The remarkable part of the theorem is that this condition is also sufficient for

decentralization.

There are several natural extensions of this project. First, we would like to consider more

general forms for the flow rate from the queue to the processor. In this paper, we assumed that the

25

flow takes a special (though fairly natural) form. This demonstrated the simplification arising from

making the flow rate a smooth function of the endogenous variables and allowed several questions

to be answered precisely (e.g., the merger section). We think many of the benefits of this smoothing

approach would carry over to a more general setting.

A second direction we would like to explore is allowing several queues to feed into the same

processor, or several processors to accept flows from the same queue, or both. This would permit

the analysis of system design questions — such as those tackled in Beggs (2001) and Arenas et al.

(2006) — while also allowing a general specification of the processing procedure. For example,

one could ask what happens when two internal suppliers compete to sell the same input to a node

that needs it. We view this paper as a first step toward that goal, since it illustrates how many

optimization and incentive problems can be solved in a special case of that more general model.

Appendix: Proofs of Theorems and Lemmas

Proof of Theorem 1. To show the “only if”, suppose there is a steady state. We will show that

the steady state process sizes are uniquely determined and nonnegative. To this end, we first claim

that M−TT has a strictly dominant diagonal. That is, there is a diagonal matrix D (in this case

the identity matrix) such that the magnitude of each diagonal entry of D
(
M−TT

)
exceeds the

sum of the magnitudes of the other entries in its column. This is seen as follows. For each n, we

have µn = dn +
∑N

m=1 Tnm, so that

µn − Tnn = dn +
∑
m6=n

Tnm >
∑
m6=n

Tnm,

since dn > 0 by hypothesis. This establishes the dominance of the diagonal. Consequently,(
M−TT

)−1 exists (McKenzie, 1960, Theorem 1). In addition, M − TT is a Z-matrix, i.e., a

matrix all of whose off-diagonal entries are non-positive. It follows that its inverse has no negative

entries (Berman and Plemmons, 1979, Theorem 2.3). Along with the fact that all the inflows r are

nonnegative, this implies that the vector on the right side of (6) is well-defined, unique, and all of

its entries are nonnegative.

Now we show that cn > p∗n(1 − anµn). The only possible solution for the steady state queue

sizes was deduced above in (7). Suppose, to get a contradiction, that cn ≤ p∗n(1− anµn) for some

n. Then the denominator in the expression of (7) for q∗n is zero or negative. In the case p∗n < cn,

the expression for q∗n is undefined or negative, which cannot happen in a steady state by definition.

In the case p∗n > cn, no steady state can occur because the processors cannot accommodate the

steady state process sizes. Finally, in the case pn = cn, (7) gives that q∗n is either undefined (so we

are done) or zero. But if q∗n = 0, then (1) indicates that a steady state is impossible unless all the

process sizes are zero, which contradicts (6), using the assumption that r 6= 0 and the fact that

M−TT is invertible. So cn ≤ p∗n(1− anµn) is impossible and the forward implication is done.

26

To prove the “if”: if cn > p∗n(1−anµn) then by inspection of (7) we have that q∗n is well-defined

and nonnegative; direct computation shows that this choice of q∗n, along with the p∗n of (6), results

in ṗn = q̇n = 0 for each n, i.e., the steady state.

To prove that the steady state is locally stable, we will linearize the system by finding the

Jacobian matrix of (ṗ1, . . . , ṗn, q̇1, . . . , q̇n)T at the steady state configuration. Defining

kn = an

[
q∗n

anq∗n + bn(cn − p∗n)

]2

and `n = bn

[
cn − p∗n

anq∗n + bn(cn − p∗n)

]2

,

the Jacobian matrix is, by direct computation,

J =

−k1 − µ1 `1

−k2 − µ2 `2

.

−kN − µN `N

k1 + T11 T21 · · · TN1 −`1

T12 k2 + T22 · · · TN2 −`2

...
...

. . .
...

. . .

T1N T2N · · · kN + TNN −`N

,

where the blank regions are filled with zeros. We will show the matrix has a strictly dominant

diagonal. To this end, we claim there exist constants ξ1, . . . , ξ2N such that the following inequality

holds:

ξm|Jmm| >
2N∑
n=1

ξn|Jnm| for each m ∈ {1, . . . 2N}. (17)

First, observe that for each m ∈ V, we have km + µm > km +
∑N

n=1 Tmn because, by definition,

µm = dm +
∑N

n=1 Tmn >
∑N

n=1 Tmn; the last inequality uses the assumption dm > 0. Then there

are constants ξ1, . . . , ξN < 1 such that, for each m ∈ V, ξm(km + µm) > km +
∑N

n=1 Tmn. Setting

ξN+1 = · · · = ξ2N = 1 satisfies (17). Consequently, J is negative definite (McKenzie, 1960, Theorem

2). This implies that the system is locally stable around the steady state (Jordan and Smith, 1999,

Theorem 8.15).

Proof of Lemma 1. Expanding (12) using (7) and (10) yields

K(c) =
N∑

k=1

(
ωkck + γk

bkµkp
∗
k(ck − p∗k)

ck − p∗k(1 + akµk)
+ βkrk

N∑
m=1

Smk

[
bmµm(cm − p∗m)

cm − p∗m(1 + amµm)
+ 1
])

. (18)

Optimal capacities c∗1, . . . , c
∗
n which minimize K, if they exist, must satisfy for each n the first order

condition:

0 =
∂K

∂cn
= ωn −

anbnγn (µnp∗n)2

[cn − p∗n(1 + anµn)]2
− anbnµ2

np∗n

[cn − p∗n(1 + anµn)]2

N∑
k=1

Snkβkrk.

27

The equation reflects the fact that p∗n is determined independently of capacity. We solve these

equations to obtain

c∗n = p∗n (1 + anµn) + µn

√√√√anbnp∗n
ωn

(
γnp∗n +

N∑
k=1

Snkβkrk

)
.

Let c∗ denote the column vector of the optimal capacities.

Note that the expression whose square root is taken above is obviously a nonnegative number

and so c∗n is well-defined. Write ĉn := p∗n (1 + anµn). Pick an arbitrary x ∈ D. Define the closed

set

Ωδ,∆ := [ĉ1 + δ, ĉ1 + ∆]× · · · × [ĉN + δ, ĉN + ∆] .

We claim δ > 0 can be chosen sufficiently small and ∆ can be chosen sufficiently large so that all

the following conditions hold:

1. x ∈ Ωδ,∆;

2. c∗ ∈ Ωδ,∆;

3. K(c) > K(c∗) for all c ∈ ∂Ωδ,∆.

It is obvious how the first two conditions can be simultaneously satisfied. To get the third, note

that for any point c ∈ ∂Ωδ,∆, there exists an n such that cn = ĉn + ∆ or cn = ĉn + δ. In the

former case, ∆ can be chosen sufficiently large so that the ωncn term in (18) is larger than K(c∗).

In the latter case, δ can be chosen small enough to make the denominator cn − p∗n(1 + anµn) in

(18) arbitrarily small, so that the associated βnrntn term of the total cost K is arbitrarily large,

and in particular larger than K(c∗). Since all the terms being summed in (18) are nonnegative,

this suffices to show that condition 3 can be satisfied. Finally, observe that the condition can be

satisfied without breaking either of its predecessors by simply taking the smallest δ and the largest

∆ required by any of the three conditions.

Since the cost K is a continuously differentiable function of the capacities c, the Weierstrass

extreme value theorem guarantees that all global minima of K over the compact set Ωδ,∆ occur

either at critical points of K that lie inside Ωδ,∆, or otherwise on the boundary ∂Ωδ,∆. By the first

paragraph of this proof, and condition 2 above, there is exactly one critical point in Ωδ,∆, namely

c∗. Condition 3 ensures that the global minimum of K on Ωδ,∆ does not occur on the boundary,

so it must occur at c∗. Hence, by definition of the global maximum, K(c∗) ≤ K(x). This holds for

all x ∈ D, so a global minimum of K over D occurs at c∗. The first paragraph of the proof entails

that at all other possible steady state capacities, ∂K/∂cn is nonzero for some n, so none of these

points can be even local minima, and this establishes that the global minimum occurs at exactly

one point in D, namely at c∗.

28

Proof of Theorem 2. From (7), we have, for each n ∈ N ,

q̄n − qn − q̂n = γn
anbnµ2

n(ĉnpn − cnp̂n)2

[cn − pn(1 + anµn)] [ĉn − p̂n(1 + anµn)] [c̄n − p̄n(1 + anµn)]
,

and the claim follows.

Proof of Corollary 1. Using (11), we find

π̄ − π − π̂ =
N∑

n=1

γn(q̄n − qn − q̂n),

whereupon the claim follows by the theorem.

Proof of Theorem 3. Expanding q∗n, tn, and τn in (15) using (7), (8), and (10) gives

Kn(cn) = wncn + γn
bnµnp∗n(cn − p∗n)
ck − p∗k(1 + akµk)

+ βnrn

N∑
m=1

Smn

[
bmµm(cm − p∗m)

cm − p∗m(1 + amµm)
+ 1
]

+ χn(µnp∗n − rn) · 1
µn

[
bnµn(cn − p∗n)

cn − p∗n(1 + anµn)
+ 1
]

.

The first-order condition for cost minimization is

0 =
∂Kn

∂cn
= wn −

anbnγnµnp∗n [µnp∗n + βnrnSnnµn + χn(µnp∗n − rn)]
[cn − p∗n(1 + anµn)]2

.

From this, we find that the capacity c†n which minimizes the local cost Kn — if such a capacity

exists — is

c†n = p∗n(1 + anµn) +

√
anbnµnp∗n [(γn + χn)µnp∗n + βnµnrnSnn − χnrn]

ωn
. (19)

The one-dimensional case of the proof of Lemma 1 establishes that this is the capacity corresponding

to the unique absolute minimum of the local cost function Kn.

As mentioned in the text, the local operators will maintain optimality if and only if the local

prices χn are set so that the locally optimal capacity c†n matches the globally optimal capacity c∗n.

Solving c†n = c∗n using expressions (13) and (19) yields the formula for χn.

The system of transfer prices is balanced by the description of payments among nodes: the

amount sent by node m for node n’s services is exactly the amount received by node n.

Finally, we verify that the expression for χn is well defined. It suffices to verify that the

denominator in (16) is nonzero. Note that, using (4),

1− rn

µnp∗n
=

∑N
m=1 Tmnp∗m

rn +
∑N

m=1 Tmnp∗m
.

By assumptions stated in Section 2, the process size p∗m is nonzero for each m, so the numerator

is nonzero. By an assumption stated at the beginning of Section 5, Tmn is nonzero for some m, so

that the denominator is nonzero.

29

Proof of Lemma 2. Recall from Section 2 that Snm = ∂p∗n/∂rm, where S =
(
M−TT

)−1. We

will show that Snm > 0 if and only if there is a sequence of nodes

n1 = m,n2, n3, . . . , n` = n

such that Tnjnj+1 > 0 for all 1 ≤ j < `.

First, we can find a s > 0 and a nonnegative matrix B such that

M−TT = sI−B.

Moreover, we can choose s and B so that all off-diagonal entries of B match those of TT , and

so that B has only positive entries on its diagonal. By Berman and Plemmons (1979, pg.138),

the diagonal dominance of M − T ensures that the spectral radius of B is at most s. Then by a

standard result on the Neumann series (Meyer, 2000, pg. 618), we may write

S =
1
s
·
∞∑

k=0

(B/s)k . (20)

Denote by B
(k)
nm the entry in the (n, m) position of Bk. By (20), Snm is nonzero if and only if

B
(k)
nm is nonzero for some k.

By a simple induction argument,

B(k)
nm =

∑
i2,...,ik−1∈N

Bni2Bi2i3 · · ·Bik−1m.

Since the off-diagonal entries of B match those of TT (and by our conditions on B), this sum is

nonzero if and only if ∑
i1,...,ik−1∈N

Tmik−1
Tik−2ik−3

· · ·Ti2n

is nonzero, where we have reversed the order of indices (because of transposition) and the order of

the factors in each summand. This sum is nonzero for some k if and only if the condition in the

statement of the lemma holds.

Proof of Theorem 4. Suppose the hypothesis holds. Consider formula (16), which we rewrite as

χn =

(∑N
k=1 Snkβkrk

)
/p∗n − εnnβn

1− rn/(µnp∗n)
(21)

Whenever rk 6= 0 and Snk 6= 0, βk is equal to the common urgency of the nodes that influence node

n; we will call this common urgency β̂n. Then

N∑
k=1

Snkβkrk = β̂n

N∑
k=1

Snkrk = β̂np∗n,

30

where the last equality follows from the defintion of S and from (6). Then, simplifying (21), we

obtain

χn =
β̂n − εnnβn

1− rn/(µnp∗n)
.

Since only constants and local parameters appear on the right, node n can be managed separately

from the rest of the system.

Proof of Theorem 5. A tedious but straightforward calculation shows that if m 6= n, then

∂χn

∂rm
=

1
p∗n

· ∂p∗n
∂rm

· βm − χn

1− rn/(µnp∗n)
.

From this, the claims about proportionality relationships follow immediately.

Moreover,
∂χn

∂rn
=

1
p∗n

· χn(1/µn − ∂p∗n/∂rn)
1− rn/(µnp∗n)

.

To show this quantity is not positive, it suffices to establish that 1
µn

− ∂p∗n
∂rn

≤ 0 or, equivalently,
∂p∗n
∂rn

·µn = Snnµn ≥ 1. Note that µn is the entry in the (n, n) position of the matrix M−TT , using

the assumption that Tnn = 0. Since ST and M −TT are inverses, it follows that their product is

the identity matrix. In particular, writing out explicitly the expression for the entry in the (n, n)

position of their product, we get 1 = Snnµn −
∑

m6=n SnmTmn. Since S has no negative entries

by the proof of Theorem 1, it follows that the summation is nonnegative and so Snnµn ≥ 1, as

desired.

References

D. Adelman. Price-directed control of a closed logistics queueing network. Preprint, available at

http://faculty.chicagogsb.edu/daniel.adelman/research/fleet_paper.pdf, 2006.

M. Alles and S. Datar. Strategic transfer pricing. Management Science, 44(4):451–461, 1998.

A. Arenas, A. Cabrales, L. Danon, Albert Dı́az-Guilera, Roger Guimerá, and Fernando Vega-

Redondo. Optimal information transmission in organizations: Search and congestion. Preprint,

available at

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=433861, 2006.

T. Baldenius, S. Reichelstein, and S. Sahay. On the economics of transfer pricing. Review of

Accounting Studies, 4(2):67–91, 1999.

A. W. Beggs. Queues and hierarchies. Review of Economic Studies, 68:297–322, 2001.

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic

Press, New York, 1979.

31

G. R. Bitran and S. Dasu. A review of open queueing network models of manufacturing systems.

Queueing Systems, 12(1–2):95–134, 1992.

S. K. Bose. An Introduction to Queueing Systems. Kluwer Academic/Plenum Publishers, New

York, 2001.

A. M. Brandenburger and B. J. Nalebuff. Co-Opetition. Doubleday, New York, 1996.

K. M. Chandy, U. Herzog, and L. S. Woo. Approximate analysis of general queuing networks. IBM

Journal of Research and Development, 19(1):43–49, 1975.

L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G. Rackham. Impact of service

orientation at the business level. IBM Systems Journal, 44(4):653–668, 2005.

C. H. Crawford, G.P. Bate, L. Cherbakov, K. Holley, and C. Tsocanos. Toward an on demand

service-oriented architecture. IBM Systems Journal, 44(1):81–108, 2005.

M. L. Fisher, J. H. Hammond, W. R. Obermeyer, and A. Raman. Making supply meet demand in

an uncertain world. Harvard Business Review, 72(3):83–93, 1994.

J. Hagel and M. Singer. Unbundling the corporation. Harvard Business Review, 77(2):133–141,

1999.

J. Hirshleifer. On the economics of transfer pricing. The Journal of Business, 29(3):172–184, 1956.

B. Holmstrom and Jean Tirole. Transfer pricing and organizational form. Journal of Law, Eco-

nomics, and Organization, 7(2):201–228, 1991.

D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations: An Introduction to Dy-

namical Systems. Oxford University Press, Oxford, 1999.

L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons, New York, 1975.

A. J. Lemoine. Networks of queues — a survey of equilibrium analysis. Management Science, 24

(4):464–481, 1977.

J. D. C. Little. A proof of the queuing formula: l = λw. Operations Research, 9:383–387, 1961.

J. Marschak. Elements for a theory of teams. Management Science, 1(2):127–137, 1955.

R. P. McAfee. Competitive Solutions. Princeton University Press, Princeton, NJ, 2002.

L. McKenzie. Matrices with dominant diagonals in economic theory. In Kenneth J. Arrow, Samuel

Karlin, and Patrick Suppes, editors, Proceedings of the First Stanford Symposium on Mathe-

matical Methods in the Social Sciences, pages 47–62, Stanford, CA, 1960. Stanford University

Press.

32

Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000.

D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communications

of the ACM, 15(12):1053–1058, 1972.

M. Porter. Competitive Advantage: Creating and Sustaining Superior Performance. Free Press,

New York, 1985.

R. Radner. The application of linear programming to team decision problems. Management Science,

5(2):143–150, 1959.

R. Radner. The organization of decentralized information processing. Econometrica, 61:1109–1146,

1993.

H. Takagi. Queueing Analysis, Volume 1. Elsevier North Holland, Amsterdam, 1991.

33

