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Abstract
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products (i.e., ”mixed bundling”). However, this is impractical for firms with more than a few products,
because the number of prices increases exponentially with the number of products. In this study we
show that simple pricing strategies are often nearly optimal—i.e., with surprisingly few prices a firm can
obtain 99% of the profit that would be earned by mixed bundling. Specifically, we show that bundle-size
pricing—setting prices that depend only on the size of bundle purchased—tends to be more profitable
than offering the individual products priced separately, and tends to closely approximate the profits from
mixed bundling. These findings are based on an array of numerical experiments covering a broad range
of demand and cost scenarios, as well as an empirical analysis of the pricing problem for an 8-product
firm (a theater company).
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1 Introduction

We study the pricing problem of a multiproduct firm facing consumers who may purchase more

than one (and possibly all) of the firm’s products. Examples include cable television companies,

professional sports teams, and online music stores. Such firms can choose from a wide variety of

alternative pricing schemes. They can simply sell their products at a uniform price, or they can

set different prices for each of their products. There are also bundling possibilities: the products

could be offered only as a complete bundle, or subsets of products could be offered as bundles

and other products could be sold individually. The sheer number of available alternatives—for a

firm with K products, there are 2K−1 possible combinations of products that can be separately

priced—makes this a highly complex problem for firms. Even for a firm selling only 10 products,

there are over a thousand prices that could potentially be set.

In reality firms almost never implement complex pricing structures. Indeed, the reverse

seems more common: firms often employ remarkably few prices. Why is this? In this study we

show that simple pricing strategies are often nearly optimal. That is, in a broad class of models

it takes surprisingly few prices to obtain 99% of the profit that would be earned by pricing every

possible bundle combination. Of course, it matters which prices the firm chooses to set. We

find that bundle-size pricing (BSP)—a simple strategy that has not yet been explored in the

literature—tends to be more profitable than offering the individual products priced separately,

and tends to very closely approximate the profits from mixed bundling.

BSP involves setting different prices for different sized bundles. For a firm with 3 goods,

BSP sets one price for the purchase of any single good, a second price for the purchase of any 2

goods, and a third price for purchasing all 3. The prior literature on bundling has ignored BSP,

instead focusing on a few other alternatives: mixed bundling (MB), in which the firm chooses

prices for every combination of goods; component pricing (CP), in which the firm sets different

prices for each of its products; and pure bundling (PB), in which consumers’ only option is to

purchase all of the firm’s products at a single price.1

The prior research offers two results of relevance for a firm with K products. First, MB

tends to be strictly more profitable than CP.2 Second, it is possible that PB is more profitable

than CP.3 Hence, the implication for a firm with 10 products, say, would be: the best thing to

do is set 1,023 prices under MB; and if that is not feasible (likely) then offering all products only
1Component pricing is sometimes also referred to as “independent good pricing”.
2See McAfee, McMillan and Whinston (1989).
3See Stigler (1963) and Adams and Yellen (1976).
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as a single package may be more profitable than offering them individually (or perhaps not).

Our findings offer a new suggestion: BSP requires only 10 prices and attains 99% of the profit

from MB under most circumstances—even when demand is highly asymmetric across products.4

This is a significant step forward in providing practical advice for multiproduct firms.

We show that BSP and MB both tend to drive consumers to purchase larger-sized bundles

than they would under CP. This has the effect of reducing consumers’ heterogeneity in valuations

for the products, which was always the key insight of the bundling literature. Put differently,

the demand for each of the firm’s K products under BSP (where a product is defined by bundle-

size) tends to be less heterogeneous than the demands for the K products under CP. With less

heterogeneity, the firm can extract more surplus.5 However, it may seem that CP would be

more profitable when there is a high degree of demand asymmetry across products. In fact,

BSP is also able to extract surplus from individuals with high demand for one product and not

others—BSP does so by setting a high price for single-good bundles.

The heterogeneity-reduction effect of bundling also implies that different bundles of the same

size do not need to be priced very differently if the bundles are large. Hence, prices for large-

sized bundles under BSP tend to be very close to prices under MB. This is why BSP tends be a

good approximation to MB. One interpretation of our findings, then, is that many of the prices

a firm would set under MB are redundant.

Our analysis has two components. First, we perform a large number of numerical experiments

covering a broad range of demand and cost scenarios. In each experiment we compute the

optimal prices under CP, PB, BSP and MB, and the associated profits. Numerical analysis is

necessary for this problem because the profit maximization problem is analytically intractable

under all but the simplest assumptions about the distribution of consumers’ tastes.6 An obvious

limitation to this approach is that we cannot be certain our results will transcend the particular

parameter values we covered. For this reason, the second component of our analysis utilizes

an estimated model. This allows us to demonstrate that our findings apply to an empirically

relevant model.

The empirical analysis is based on a theater company that produces a season of 8 plays. It
4Since BSP nests PB, it is also the case that BSP is always at least as profitable as PB and is often significantly

more profitable.
5In the extreme, if marginal costs are zero, as K → ∞ MB pushes all consumers toward purchasing the full

bundle (i.e. MB simply implements PB in this limit), and extracts the entire consumer surplus. See Bakos and
Brynjolffson (1999).

6We are not the first to rely on numerical methods to analyze bundling problems. See also Schmalensee (1984)
and Fang and Norman (2006).
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is an interesting setting in which to compare the profitability of different pricing schemes. On

the one hand, the plays differ in overall popularity, suggesting that component pricing may be

important for profits. On the other hand, many consumers attend multiple plays, suggesting

that some form of bundling may also be profitable. With 8 goods, MB would require the firm to

set 255 prices, which is clearly impractical. In considering simpler alternatives, how important

is it for the firm to set high prices for high demand plays? What about offering discounts

to consumers that attend multiple plays? Or some combination of these? And how do these

alternatives compare to MB in terms of profits and consumer surplus?

A key feature of the theater data is that we observe the set of plays chosen by each customer.

This allows us to identify the covariances in the joint distribution of consumers’ tastes, which

is an important determinant of profitability under alternative bundling schemes. The estimated

demand system reveals strong positive correlations in tastes for most pairs of plays, which tends

to reduce the relative profitability of bundling-type strategies compared to CP. Indeed, PB is

6% less profitable than CP in this case. Nevertheless, we find that BSP is 0.9% more profitable

than CP, and BSP attains 98.5% of the MB profits.7

While our focus is on bundling, approximating complex strategies using simpler alternatives

is also an important issue in the theory of contracts. Rogerson (2003) argues that in a standard

principal-agent model, most of the gains to the principal from offering the optimal continu-

ous menu of contracts can be captured by simpler alternatives.8 See also McAfee (2002) and

Wilson (1993) for similar findings in the context of nonlinear pricing.

The remainder of the paper is organized as follows. In Section 2 we summarize the relevant

prior literature. Section 3 describes the basic intuition underlying the various pricing strategies,

and presents the results from an extensive set of numerical experiments. The empirical example

is presented in Section 4. Section 5 concludes.

7If we set the estimated covariances in the demand system to zero, holding all other estimated parameters
fixed, BSP is 20.5% more profitable than CP.

8In the specific case of uniform types and quadratic effort costs, he shows that exactly 75% of the gains from
offering the optimal menu can be obtained using a simple two-item menu, consisting of a fixed-price contract and
a cost-reimbursement contract.
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2 Prior Theoretical Literature

The bundling literature explores the idea that a multiproduct monopolist can increase profits by

selling goods in bundles, even when there are no demand-side complementarities or supply-side

economies of scope. If a firm sells 2 products, and consumers vary in their willingness-to-pay for

each product, then Stigler (1963) shows by example that selling these 2 products as a bundle

(PB) may yield higher profit than if sold separately (CP). Adams and Yellen (1976) introduce

MB as an alternative to CP and PB, showing by example that MB can strictly dominate both

CP and PB. They also explain why higher values of marginal cost tend to favor CP over PB:

with bundling, individuals may consume products for which their willingness-to-pay is less than

the marginal cost to the firm.9

Two subsequent papers show that bundling (PB or MB) dominates CP in a wide variety

of circumstances. First, Schmalensee (1984) expands the analysis to demand systems where

consumers’ product valuations are drawn from a bivariate normal.10 Due to the limited com-

puter power at the time, Schmalensee does not compute optimal MB prices, instead focusing on

CP and PB. His main finding is that PB can be more profitable than CP even when the cor-

relation of consumers’ valuations is non-negative.11 Second, McAfee, McMillan and Whinston

(1989) extend the prior results by showing that MB strictly dominates CP under rather general

circumstances.12

All the above papers analyze two-product monopoly problems. A few prior papers study

bundling with more than two goods. Bakos and Brynjolfsson (1999) focus on the profitability

of PB as the number of goods (K) goes to infinity. They show that if goods have zero marginal

cost, then as K goes to infinity PB approximates perfect price discrimination.13 This finding is

particularly interesting in our context, since it provides an example of an incomplex alternative

to MB that closely approximates the profitability of MB in a particular circumstance (i.e., large

K).
9In the language of Adams and Yellen (1976), these are violations of the exclusion condition.

10A concern with this approach is that the bivariate normal implies negative valuations for some consumers
which would impact the analysis in non-trivial ways, as noted by Salinger (1995). In all of the analysis in our
study we allow for free disposal.

11The numerical examples in Stigler (1963) and Adams and Yellen (1976) somehow suggest the importance of
negative correlation, as noted by Schmalensee (1984).

12McAfee, McMillan and Whinston (1989) also distinguish between firms that can monitor purchases or not.
With monitoring, the firm can charge a price for the bundle of 2 that is higher than the sum of component prices.
We limit our analysis to the no-monitoring case. See also Manelli and Vincent (2006).

13Bakos and Brynjolfsson (1999) also show that, under certain conditions, increasing the number of goods under
PB monotonically increases profit. Geng, Stinchcombe and Whinston (2005) extend the analysis of Bakos and
Brynjolfsson to incorporate diminishing marginal utility.
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Armstrong (1999) provides a more general but similar result to Bakos and Brynjolfsson (1999).

He shows that a two-part tariff, in which consumers are charged a fixed fee and can then pur-

chase any products at marginal cost, achieves approximately the same profit as perfect price

discrimination if the number of products approaches infinity. In the special case of zero marginal

cost the two-part tariff is equivalent to PB. The focus on settings with large numbers of products

may be quite relevant for some firms, such as booksellers or supermarkets. But clearly these

results are of questionable relevance to firms with 5 products, say.

Fang and Norman (2006) also examine the profitability of PB with more than two goods. In

contrast to Armstrong (1999) and Bakos and Brynjolfsson (1999), they focus on finite K, and

they seek to determine under what circumstances PB is an attractive pricing strategy. They

confirm that increasing marginal cost tends to favor CP over PB, as Adams and Yellen (1976)

had argued. They also show (by way of numerical experiments) that increasing the number of

goods may favor PB over UP.

For a firm selling a finite number of goods, the prior literature can be easily summarized:

MB is always more profitable than CP, and in some cases PB may also be more profitable than

CP. We contend these results are of limited practical value—MB rapidly becomes impractical

as the number of goods increases above a mere few, and even in the cases when PB is more

profitable than CP it is conceivable there are other straightforward pricing schemes that will do

even better.

Hence, we focus on the question: do there exist pricing schemes that involve few enough

prices to be feasible, and that tend to yield profits that are close to the MB level?

3 The Multiproduct Pricing Problem

In principle, multiproduct firms can choose from a wide variety of pricing schemes. For a firm

with K products, the optimal MB strategy requires setting (2K − 1) prices.14 PB and UP

require only one price to be set: the price for the bundle of all K products (in the PB case), or

the per-product price (in the UP case). In between these extremes are CP, by which we mean

setting K different prices for the K different products, and BSP, by which we mean setting K

prices that depend on the number of products purchased. Note that MB nests all the simpler

pricing strategies as special cases, so it will always be weakly more profitable than any of these
14We subtract 1 because the firm does not set the price for the outside good.

5



alternatives. Similarly, CP nests UP as a special case, and BSP nests both UP and PB as special

cases. CP and BSP are non-nested alternatives.

CP and BSP are of particular interest because the number of prices equals the number of

products, which is a reasonable benchmark for practical pricing strategies. However, there are

many other potential pricing strategies that also involve K prices that are nested subsets of

MB. The problem in these cases is that it is ex ante unclear which subset of K prices to choose.

There are also strategies (with more than K prices) that nest both CP and BSP.

It is natural to ask: what is the most profitable pricing plan for a given number of prices?

In other words, it would be interesting to compute the upper-bound on profit from any pricing

strategy that involves N prices, for each value of N from 1 to 2K−1, given a particular model of

demand and costs.15 Such an upper-bound is obviously increasing in N , but it would be useful

to know how rapidly the upper-bound approaches the MB level of profits. This would provide

an indication of the value to the firm from additional complexity (as measured by the number

of prices).

There are a couple of challenges to computing such an upper-bound. First, there is a con-

ceptual issue: what does it mean to say a firm can choose any N prices? One needs to be precise

about how to determine the implied prices of bundles with unspecified prices.16 Second, in any

example with more than a few goods, there is a large number of possible pricing structures that

must be evaluated, which is a non-trivial computational challenge. For these reasons, a complete

answer to this question is beyond the scope of this study.

However, it should be noted that one of our main findings is that BSP usually attains around

99% of the profit from MB. Hence, it is already clear from our analysis that the upper-bound on

profits does indeed rapidly increase in the number of prices, N . There may exist other pricing

schemes involving K prices that are more profitable than BSP in any particular example, but

typically such schemes can yield at most a 1% improvement.

In practice, multiproduct firms tend to use a broad range of different pricing/bundling strate-

gies. Consider baseball teams, for example, which have 81 home games (products).17 For the

2006 season the Los Angeles Dodgers offered several bundles of specific games, a discount for
15Malueg and Snyder (2006) show a related result: if a monopolist sells to N independent markets with different

demands, and the cost function is superadditive (plus some other assumptions), then the ratio of CP profit to UP
profit is at most N .

16For example, CP involves K prices for each individual good and a rule for constructing the price of any bundle
with two or more goods.

17Under MB, with 81 products a firm would set 2.4× 1024 prices.
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choosing any 27 games, and equal prices for all individual games. In contrast, for 2006 the San

Francisco Giants did not offer any bundles or quantity discounts, but the Giants did vary prices

by day of week and by opponent. Variation in pricing strategies is also evident in settings with

fewer products. Consider the Steppenwolf Theater in Chicago that produces a 5-play season.

In 2006-07 they offered a discount for the 5-play bundle at a variety of prices that varied by

time-of-week, and equal prices for individual shows (also varying by time-of-week). In 2006-07

the San Francisco Opera had a 10-opera season and offered 37 bundles (combinations of specific

operas and time-of-week), and equal prices for individual shows (also varying by time-of-week).

These examples highlight the dramatic differences in pricing strategies implemented by different

firms in similar settings. We have been unable to find an example of MB being used in practice

for 3 or more products.

3.1 Examples with Two Goods and Two Consumer Types

In order to clarify the basic intuition that underlies the various pricing schemes, in this section

we present select examples with two goods and two consumer types in which the optimal prices

under the various schemes are simple to determine. The examples illustrate how each of CP,

PB, and BSP may attain the highest profits in different settings. We adhere to the standard

assumptions of the bundling literature: (i) consumers purchase one or zero units of each prod-

uct; (ii) consumers’ valuations for a bundle equal the sum of their valuations for the bundle’s

component products (i.e. products are neither complements or substitutes); and (iii) there is no

resale.

The seminal papers on bundling pointed out that PB can be more profitable than CP because

it may reduce heterogeneity in consumers’ willingness-to-pay. Consider the following example.

There are two consumers (A and B) and two products (1 and 2) with zero marginal costs. Each

consumer has valuations v1 and v2 for the two products. Valuations are given by:

v1 v2

A 4 1

B 1 4

In this case the optimal CP prices are 4 and 4, and the CP profit is 8. With PB both consumers

value the bundle at 5, and so the PB price is 5, extracting the full surplus of 10. This is a textbook

example of why bundling can increase profits even though there are no complementarities in

demand or costs.
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When is CP more profitable than PB? Intuition suggests that if the optimal CP price would

be much higher for one product than the other, CP is likely to be better. But asymmetry of

this sort isn’t enough. Consider the example:

v1 v2

A 4 1

B 4 1

Demand for good 1 is higher than for good 2, and CP accommodates this by charging a price

that is 4 times higher for good 1. The CP profit is 10. But both consumers also equally value

the bundle at 5, allowing PB to also obtain a profit of 10. CP does no better than PB, despite

the substantial demand asymmetry. Note also that the above valuations provide an example of

vertically differentiated products—both consumers agree that good 1 is preferred to good 2. It

is interesting that PB may be equally profitable to CP in such a case.

For CP to significantly outperform PB, the valuations must exhibit a kind of within-product

asymmetry. In particular, a large fraction of the extractable surplus must be concentrated on

one product and one consumer type. For example:

v1 v2

A 1 2

B 5 2

In this case CP charges 5 and 2, and extracts 9. PB sets a price of 7, sells only to type B and

extracts 7. Intuitively, CP is able to charge a high price for product 1 in order to extract the

large amount of surplus attributable to type B, but this does not rule out selling good 2 to both

types. PB, on the other hand, by extracting as much surplus as possible from type B, ends up

abandoning type A altogether.

So far we have shown how PB may be more profitable than CP, and how CP may be more

profitable than PB. What about BSP? In all of the above examples BSP is equivalent to PB.

This is trivially true in the first two examples, because PB extracts the full surplus.18 In the

last example, it is tempting to set BSP prices of 2 (for one good) and 7 (for two goods), but in

that case type B would choose only good 1 rather than the bundle of two, so BSP can do no

better than PB.19

18Note that PB can never yield strictly higher profit than BSP because PB is a constrained version of BSP.
19Put differently: in order to induce B to buy the bundle, the BSP price for the bundle of one has to be
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Clearly BSP cannot do worse than PB. But under what circumstances will BSP be strictly

more profitable than PB? Consider the following example:

v1 v2

A 4 0

B 3 3

The optimal CP prices are 3 and 3 yielding a profit of 9. The optimal PB price is 4, which yields

a profit of 8. BSP charges 4 for the purchase of any single good, and 6 for the purchase of both.

Type A buys product 1, type B buys the bundle of both, and profits are 10. Intuitively, the

reason BSP is more profitable is that the consumer with the highest valuation for a bundle of

one is different from the consumer with the highest valuation for a bundle of two. BSP is able

to extract more surplus by setting prices that separate the two consumers, whereas PB is forced

to pool the two types by lowering the price of the bundle of two.

Loosely speaking, we expect BSP to outperform PB when (i) willingness to pay for the

bundle of all K products is heterogeneous across consumers, and (ii) consumers (or consumer

types) who have the highest willingness to pay for a bundle of size m are not necessarily the

same as those with the highest willingness to pay for a bundle of size n > m. In Appendix A

we provide a formal condition that is sufficient for BSP to be strictly more profitable than PB.

Note also, in this example both consumers weakly prefer good 1 to good 2 (vertically differen-

tiated products). This is analogous to a baseball team with one specific game that all consumers

value more than any other game. Economists sometimes cite the overwhelming popularity of

certain baseball games, such as games between traditional rivals like the New York Yankees

and the Boston Red Sox, as evidence that CP would be much more profitable than UP. It is

interesting that in such a setting BSP may be even more profitable than CP.

3.2 An Example with Two Goods and a Continuum of Consumer Types

The goal of any pricing strategy is to extract as much surplus as possible from consumers.

If consumers are heterogeneous, then a strategy that can separate consumers according to

willingness-to-pay will extract more surplus than a strategy that cannot. CP separates con-

sumers in a straightforward way: consumers with a high valuation for a given good can be

high—but doing this means that A doesn’t buy anything. The best BSP can do is pool the two types together
by charging the PB price.
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separated from consumers with a low valuation. In the two type example, this can result in one

type buying a single good and the other type buying both goods. The same pattern can arise

under BSP, but the mechanism is quite different. For BSP to obtain separation of the two types,

the type with the highest valuation for a single-good bundle must differ from the type with the

highest valuation for the two-good bundle. If not, then BSP is equivalent to PB and there is

pooling. Of course, this condition is inconsequential for whether there is separation under CP,

which illustrates that CP and BSP are very different screening devices.

With a continuum of consumer types, the difference in screening becomes more complex.

Consider the following example. Assume there are two goods, both with zero marginal cost.

Consumers’ valuations for good 1 are uniformly distributed between zero and θ: v1 ∼ U [0, θ].

And consumers’ valuations for good 2 are uniformly distributed between zero and 1: v2 ∼ U [0, 1].

Also assume that v1 and v2 are uncorrelated. The virtue of this model is that we can derive

analytic solutions for the optimal prices under CP, BSP and MB, as well as the associated profits

(see Appendix B for details).20 If θ = 1.7 then the optimal CP prices are .85 and .5 for goods

1 and 2, respectively. Under BSP the optimal price for a single-good bundle is .9, and the price

for the bundle of both goods is 1.1. In this example BSP is 5.6% more profitable than CP (even

though the optimal CP prices vary by 70% across the two goods).

The comparison between BSP and MB in this example is also instructive. Under MB,

the price for good 1 is 1.13, the price for good 2 is .67, and the price for the bundle is 1.18.

Unsurprisingly, the price for a single-good bundle under BSP (.9) lies between the two single-

good prices under MB. The price for the two-good bundle is quite close under BSP and MB

(1.1 and 1.18 respectively), in comparison to the differences in single-good prices. However, only

15% of the total profit under MB comes from consumers who buy one good, with the remaining

85% coming from sales of the bundle. This pattern of BSP prices closely approximating the MB

prices for bundles but not for individual goods, and of bundles being more important to profits,

also applies to the numerical experiments we analyze below. Put simply, BSP prices closely

approximate MB prices where it matters most—for large-sized bundles.

In Figure 1 we show how CP and BSP lead to different partitions of consumers (for θ = 1.7).

CP is the most straightforward: consumers to the right of .85 purchase good 1, and consumers

above .5 purchase good 2 (with consumers in region A purchasing both). Under BSP consumers

in the two regions labelled C purchase one product (good 1 for the lower right C, and good 2

for the upper left C). And under BSP consumers in regions A, D and E choose the bundle of
20A limitation of this model is that BSP is weakly more profitable than CP for all values of θ. Nevertheless,

the model is helpful for demonstrating the differences between CP and BSP for a given value of θ.
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both goods.

One interesting way to read Figure 1 is to ask which pricing scheme extracts more surplus

from which consumers. Consumers located in region A purchase both goods under CP and BSP.

Under CP, these consumers each pay 1.35 and under BSP they pay 1.1. Hence, the firm extracts

more surplus from consumers in region A by using CP rather than BSP. CP also extracts more

surplus from consumers in region B, since these consumers buy either good under CP and buy

nothing under BSP. BSP, on the other hand, extracts greater surplus from consumers in regions

C, D and E. Region E is particularly interesting because these consumers purchase nothing under

CP, and under BSP purchase the bundle of both goods. Consumers in region D also increase

the number of goods purchased (from a single good to two). In region C the number of goods

consumed remains at one, but BSP extracts more surplus because the price for a single good

(.9) is greater than both single prices under CP. To summarize these differences, in Figure 1 we

shade the regions in which BSP extracts more surplus from consumers than CP.

There are four main points to take from Figure 1. First, BSP is more focused on getting

consumers to purchase multiple goods than they would have under CP. Relative to CP, BSP

raises the price for single-good buyers, and lowers the price for multi-good buyers. It is profitable

to do this in this example, but there is downside: (i) by increasing the price for a single-good

bundle, some consumers are excluded from purchasing anything who otherwise would have

purchased something (region B); and (ii) consumers that would have purchased both goods

under CP are given a discount under BSP with no change in their purchase choice (region A).

Second, from the figure it is apparent why negative correlation in consumers’ valuations

would increase the relative profitability of BSP. Note the downward trend of the shaded regions

in which BSP extracts greater surplus than CP—negative correlation would tend to increase the

fraction of consumers in these regions.21 It is also apparent from the figure that BSP is capable

of extracting more surplus from individuals in the tails with high valuations for one product

and low valuations for the other (region C). Hence, it is wrong to presume that BSP is poor at

extracting surplus from consumers with a high valuation for only one product.

The third point concerns the consequences of diminishing marginal utility. The model that

underlies Figure 1 assumes the utility of the bundle equals the sum of the utilities of the two

goods. For some products, however, it may be important to incorporate diminishing marginal
21Introducing correlation to the example will change the optimal BSP prices, changing the details of the figure.

Note, however, the optimal CP prices do not depend on the correlation of consumer’s valuations—each good is
optimally priced independently of the other good, so correlation plays no role in the CP optimization problem.
Hence, the figure would change in some ways, but it would be qualitatively similar and this point would still hold.
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utility into the analysis—e.g., by lowering the utility of a bundle by some factor that increases

with the size of the bundle. In the extreme, if diminishing marginal utility is so strong that

individuals never consume more than one good, then CP is weakly more profitable than BSP

(for any distribution of valuations).

Such reasoning suggests any degree of diminishing marginal utility should reduce the prof-

itability of BSP relative to CP, since the value of bundles is lowered. But this is wrong. Dimin-

ishing marginal utility also reduces the profitability of CP, possibly by even more than it does

for BSP. This is because CP also benefits from extracting surplus from individuals that pur-

chase both goods (region A), and CP actually extracts more surplus from this set of consumers

than BSP does. In other words, diminishing marginal utility reduces willingness-to-pay for the

bundle of both goods, which also reduces the amount of surplus that CP can extract. In the

counterfactuals based on our empirical analysis in Section 4, we indeed verify that incorporating

diminishing marginal utility can reduce the profitability of CP by even more than it does BSP.

This is another appealing aspect of BSP from a firm’s point of view.

Fourth, this example gives an indication of the complexity of the BSP pricing problem. In

this simple case with two goods and independent, uniformly distributed taste distributions, the

regions of integration for determining demand for different sized bundles are non-rectangular

and non-contiguous (i.e. region C). Adding more goods or incorporating non-zero correlation

will increase the complexity, and allowing for more realistic distributions of valuations (such as

normal) precludes analytic solutions. This is why numerical methods are essential for solving

the BSP optimization problem in more general settings.

3.3 Numerical Analysis with Continuous Types and More than Two Goods

Although the two-good examples described above are illustrative, our objective is to analyze

multiproduct pricing strategies in a more general context, and in particular to allow for more

than two products. As we have argued, when the number of products increases MB quickly

becomes highly complex. So it is important to understand which subset of prices (if any) can

capture a large fraction of the profit that MB would obtain. The above examples illustrate how

any of CP, PB or BSP may be the most profitable in any given circumstance.

The results in this section are based on a broad range of computational experiments in which

we solve for the optimal prices and profits for 5 different pricing strategies, which are detailed

in Table 1. In all experiments we assume a demand model in which consumer i’s utility from
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purchasing bundle j is equal to V ′
i Dj − pj , where Vi is a K × 1 vector of valuations for the

firm’s K products, Dj is a K × 1 vector of binary indicators for which of the K products are

included in bundle j, and pj is the price of bundle j.22 Each consumer’s problem is to choose the

offered bundle that maximizes her utility. Consumers’ product valuations are heterogeneous:

Vi is drawn from a (multivariate) distribution F . Importantly, we allow for free disposal—if a

consumer purchases a bundle that includes a product for which she has a negative valuation we

assume zero utility from consuming that product.23

We vary the number of goods in the experiments from 2 to 5. Each experiment is performed

under four different assumptions regarding costs: (i) all products have zero marginal cost; (ii) all

products have positive and equal marginal cost; (iii) all products have positive but differing

marginal cost (we set marginal costs equal to half of each product’s mean valuation); and

(iv) marginal costs are zero but there is a binding capacity constraint.24

Table 2 describes 13 alternative assumptions on the distribution of consumers’ valuations

(F ) that we consider in our experiments. Note that we include distributions with non-zero

covariances in product valuations across products. This is important since correlation in tastes

is a key determinant of the profitability of bundling, as the prior literature has noted. Expo-

nential, logit, lognormal, and normal distributions are all commonly used in empirical studies

of demand. The uniform distribution is often convenient in theoretical studies of demand and

is also occasionally used in empirical work.

For each parametric distribution we perform experiments for a broad range of parameter

values. To help others reproduce our findings, rather than randomly draw parameter values,

we define a grid of uniformly spaced parameter combinations. The grid boundaries for each

parametric family are shown in Table 2. In each case the boundaries were chosen so that the

range of optimal prices is roughly similar across cases to help with comparability. It is also

important that our experiments include cases with a high degree of demand asymmetry, which

can favor CP. Hence, we choose grid boundaries that allow optimal CP prices to vary by up to

a factor of 10.25

22As in the two-type examples in the prior subsection, by assuming additive preferences we are ruling out
consumption complementarities as a motivation for bundling.

23Schmalensee (1984) does not allow free disposal. Either assumption may be correct depending on the partic-
ular products.

24For the experiments with capacity constraints we first find the optimal uniform price in the absence of any
capacity constraint, and then set the capacity constraint equal to .9 times the demand for the most popular
product under the optimal uniform price. This ensures that the capacity constraint will be binding for at least
one product under UP regardless of the particular parameters of the taste distribution.

25Specifically, the range of parameters for each distributional family is such that the optimal component prices
(assuming zero marginal cost) vary from about 0.2 to 2.0.
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It is conceivable a firm may consider bundling together products for which the optimal

component prices vary by much more than a factor than 10. We have chosen instead to focus on

settings where the component products are more similar. Baseball games are perhaps an ideal

example, because it is conceivable that the most popular game would have have an optimal

component price that is several times greater (though probably not more than 10 times greater)

than the least popular game. See also our empirical example in the next section. Nevertheless,

it must be noted that some of our results may not generalize to settings where demand differs

more dramatically across products.

The granularity of each grid of parameter values varies with the number of products, so that

we analyze approximately 220 parameter combinations for each class of distribution regardless

of the number of products. We consider 13 parametric families, 4 marginal cost assumptions,

variation in the number of products from 2 to 5, and about 220 parameter combinations in each

case—leading us to compute 5 sets of prices and profits in over 45,000 different examples. Nu-

merical methods are used to find the optimal prices in each case.26 We calculate the demands for

each bundle using a kernel-smoothed frequency simulator, as discussed in Hajivassiliou, McFad-

den, and Ruud (1996), using 10,000 simulated consumers and a logistic kernel with smoothing

parameter 0.02.

Before summarizing the outcomes of these experiments, it is important to acknowledge the

limitations inherent to this kind of computational analysis. Although we attempt to cover a

large space of parameter values, the results clearly depend on the specific parameters we choose

(i.e. the choice of grid). Further, there is no way for us to know whether we are under- or over-

sampling the relevant (i.e., empirically plausible) combinations of parameters. So, for example,

when we describe average outcomes, these should certainly not be interpreted as outcomes that

would be expected in an empirical sense—they should be interpreted narrowly as the average of

the experiments we performed.

3.4 Results from Numerical Analysis

Figure 2 provides a summary of the numerical experiments for 3 different assumptions about

costs.27 The figure shows box-plots depicting various percentiles of the distribution of profits
26Specifically, we use SNOPT, a sequential quadratic programming algorithm developed by Gill et al (2002) for

solving nonlinear constrained optimization problems. For BSP and MB, we also check to make sure the computed
optimal prices are robust to alternative start values.

27We exclude the experiments for positive and equal marginal costs because they add no further insight, but
we do include these results in the tables we discuss below.
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under each pricing strategy relative to BSP. To construct a given box-plot we pool experiments

across distributions of consumers’ valuations and for K = 2, ..., 5.28 Hence, while the figures

reveal the range of outcomes, they hide the differences across distributions and across K.29 In

Figure 2 each box-plot indicates the 1st, 25th, 50th, 75th and 99th percentiles of the distribution

of profit for a given pricing strategy relative to BSP.30

As expected, Figure 2 shows that MB is always more profitable than BSP (because MB nests

BSP), and BSP is always more profitable than UP (because BSP nests UP). However, there are

two more substantive findings to be taken from Figure 2:

1. BSP tends to be more profitable than CP. Based on the 46,344 experiments we performed

(across different cost assumptions and across different taste distributions), we find that

BSP is more profitable than CP 91% of the time. Furthermore, BSP obtains 13% higher

profit than CP, on average.

2. BSP tends to obtain profits that are within 1% of the profits from MB. Specifically, the

profit from BSP is within 1% of MB in 60% of the 46,344 experiments we performed. And

on average, we find that BSP yields 98% of the MB profits.

Figure 2 also shows that varying assumptions about costs has an impact on the relative

profits of the different pricing strategies, but the effect is quite small. Under the assumption

of zero marginal costs, BSP is more profitable than CP in 97% of the experiments, and BSP is

within 1% of the MB profits in 75% of the experiments. In comparison, under the assumption of

positive and unequal marginal costs, BSP is more profitable than CP in 87% of the experiments,

and BSP is within 1% of the MB profits in 34% of the experiments (although even here BSP

attains 97% of the MB profits, on average). This is to be expected since the prior literature has

explained that increases in marginal costs make “exclusion” (i.e., preventing consumers from

purchasing goods they value below marginal cost) relatively more important.

In the introduction we noted that prior research shows that PB can be more profitable than

CP for finite K. We find that PB attains higher profit than CP in 61 percent of our numerical

experiments. We also find that increasing the number of goods tends to favor PB over CP: for

K = 2, 3, 4, 5, PB is more profitable in 53, 61, 64, and 66 percent of the experiments, respectively.

Fang and Norman (2006) also find this pattern in their numerical experiments.
28Note that we pool across parameter combinations for a given parametric family as well as pooling across

parametric families (in addition to pooling across K).
29Those differences are shown in Tables 3 to 6, discussed below, and in even more detail in Appendix C.
30We depict the 1st and 99th percentiles instead of the min and max of the distribution because occasionally

optimization error leads to misleading values for these extremes.
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In Tables 3 through 6 we summarize the results at a less aggregate level, showing how

the performance of each pricing strategy varies according to the parametric family for the joint

distribution of consumers valuations (under each cost scenario). We report the 1st, 50th and 99th

percentiles of the distribution of profits of each pricing strategy relative to the profit from BSP,

for each parametric family of consumers’valuations. Hence, we pool together the results from

experiments with differing numbers of products (K = 2, ..., 5).31 In Appendix C we provide more

detailed summary statistics. To conserve space, we omit 5 of the parametric families described

in Table 2 from Tables 3 through 6, because they make no qualitative difference to any of the

findings.32 The detailed results for these distributions are, however, included in Appendix C.

The main point to take from Tables 3 through 6 is that the choice of parametric family may

not be innocuous in terms of the profitability of different pricing strategies. For instance, for

the logit distribution (which is one of the most commonly used in empirical research) BSP is

always more profitable than CP regardless of the level of marginal costs.33 The same is true for

log-normal distributions.

The role of a given parametric family may also vary depending on which assumption about

costs is applied. For example, when marginal costs are all zero, BSP is always more profitable

than CP if valuations are exponentially distributed. However, unequal marginal costs or capacity

constraints can change this.

Importantly, the normal distribution (including cases with independence, positive correla-

tions, negative correlations and unequal variances) is sufficiently unrestrictive in the sense that

either CP or BSP may be the most profitable under any assumption on costs. In the empirical

example we analyze below, we assume normally distributed tastes.

3.5 Discussion of Numerical Analysis

The numerical experiments demonstrate that BSP is sometimes more profitable than CP, and

that CP is sometimes more profitable than BSP (although the former is much more common in

our experiments). A key theme of this study is that BSP performs well even in the presence of

a high degree of demand asymmetry, as we explained in the two-good examples with analytic
31To be more precise, for each combination of parameters of the taste distribution we calculate the ratio of

profits under pricing strategy X to profits under BSP. The table reports various percentiles of this ratio across
parameter combinations and across K = 2, ..., 5. There are around 900 experiments in each distribution.

32We leave out: Lognormal(-), Lognormal(+), Normal(+/-), Normal(v-), and Normal(v+).
33Although the presence of capacity constraints can favor CP over BSP with logit demand.
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solutions. However, intuitively we still expect that increasing demand asymmetry favors CP

over BSP.

One simple measure of demand asymmetry is the ratio of the highest price to the lowest price

under CP. The greater this ratio, the more restrictive is BSP since it requires all single-good

purchases to be equally priced. Somewhat surprisingly, however, in our numerical experiments

this price ratio is essentially uncorrelated with the relative profit of CP vs. BSP. Even if we look

at the top 10% of experiments in terms of demand asymmetry (as measured by the price ratio),

we find that BSP is still more profitable than CP in over 80% of these experiments. In other

words, a high degree of asymmetry does not imply that CP will be more profitable than BSP.34

To better understand why BSP tends to obtain higher profits than CP in our numerical

experiments, even when demand is highly asymmetric, in Table 7 we compare prices and market

shares under CP, BSP and MB. The table documents how close the CP prices and BSP prices

are to the MB prices, as well as the closeness of the market shares. For each possible bundle of a

given size we compute absolute price differences (as a percentage of the MB price), and average

these differences across experiments. For example, based on all of our experiments with K = 3,

including all cost scenarios, CP prices for individual component sales (bundle size equals one)

tend to differ from the MB prices by 29.5%. In contrast, BSP prices in the same experiments

tend to differ from MB prices by 65.7%. Hence, Table 7 reveals that CP prices for small-sized

bundles (for any given K) tend to be closer to the MB prices than BSP does. But for large-sized

bundles, and especially for the bundle of all K products, the BSP prices are typically very close

to the MB prices, unlike CP.

The fact that prices for large-sized bundles under BSP tend to be close to the MB prices

for the same bundles stems from two sources. Consider an example in which there are 5 goods

(K = 5), and consider the prices for the various bundles containing 4 of these 5 goods (there

are 5 such bundles). Under BSP these bundles are equally priced, while under MB there may

be 5 different prices for these bundles. The results in Table 7 indicate that: (i) the average

price of these 5 bundles under MB is close to the uniform price under BSP; and (ii) there is

not much variation in prices across these 5 bundles under MB. The second of these features is

an interesting consequence of heterogeneity-reduction. That is to say, as bundle-size increases,

the demand for alternative bundles of the same size becomes similar. Hence, different bundles

of the same size do not need to be priced very differently if the bundles are large. This is why

BSP prices tend to be an especially good approximation of MB prices for large-sized bundles.
34It is possible that some other measure of demand asymmetry is a better predictor of relative profits. We

have explored several alternatives, but we have not found any single summary statistic (or collection of summary
statistics) based on demand asymmetry that serves as a good predictor of relative profits.
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Consider also the market shares shown in Table 7. Under BSP and MB the tendency is for

the majority of consumers to purchase the bundle of all K products, while under CP there are

relatively few sales of the full bundle. For example, with K = 3, CP sells a single good to 38% of

consumers, while BSP and MB sell a single good to only 12% and 14%, respectively. Meanwhile,

BSP and MB sell the full bundle to 29% and 27% of consumers, respectively, and CP sells the full

bundle to only 8% of consumers. Hence, pricing under CP tends to be a better approximation

to MB for small-sized bundles than BSP, while BSP tends to be a better approximation to MB

than CP for the large-sized bundles. But the large-size bundles matter more—MB tends to sell

many more large-sized bundles than CP, and BSP does about as well as MB in this respect.

In summary, there are two reasons why BSP tends to perform so well compared to CP even

in the presence of a high degree of demand asymmetry. First, most of the profit under BSP

derives from consumers that purchase multiple goods, and there is little benefit from varying

prices across larger-sized bundles with equal number of products. Second, it needs to be a rather

particular form of demand asymmetry for BSP to be less profitable than CP (see Section 3.1).

For example, suppose a firm sells 3 goods that are vertically differentiated and the optimal prices

under CP are 1,000, 10, and 1. This is an extremely high degree of demand asymmetry, yet

BSP can also perform well in this case, by setting a price for any one good of around 1,000, a

price for any two of around 1,010 and a price for all 3 of around 1,011.

Table 8 shows the consequences for social surplus. BSP and MB tend to yield significantly

higher total output and higher profits (as we have seen in the previous tables). The table also

shows that BSP and MB tend to also reduce the dead weight loss by significant amounts, relative

to CP. Interestingly, the table also indicates that BSP and MB tend to result in lower consumer

surplus than CP. In our experiments, apparently BSP and MB are more like perfect price

discrimination. This comes from the heterogeneity-reduction effect: there is less heterogeneity

in consumers’ valuations for bundles of multiple goods than there is for individual goods.

As noted in the beginning of this section, aside from BSP there are many other potential

pricing schemes that require the firm to set K prices for different bundles of goods. It would be

interesting to compare the profits from BSP with the distribution of profits for all other K-price

schemes, for a given demand specification. It is possible that another K-price strategy would be

more profitable than BSP in any given demand specification. Whether there exists a particular

K-price strategy that attains higher profits than BSP across all possible specifications is ques-

tionable. We make no attempt to perform this analysis here because it imposes a significant

computational burden. For a single demand specification with 5 goods (K = 5) there are nearly

170,000 different pricing schemes that involve 5 prices. Moreover, it would be important to im-
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plement this analysis for many different demand specifications, numbers of prices, and numbers

of goods. We therefore leave this to future research.

Lastly, a potential concern is that BSP is such a close approximation to MB because prices

simply don’t matter very much in our experiments. To examine this possibility, we computed

MB profits in cases where the firm is mistaken about the distribution of consumers’ valuations.

Suppose the true distribution of consumers’ valuations is joint normal with positive correla-

tions, but the firm sets MB prices incorrectly assuming negative correlations. In unreported

experiments we found this tends to yield around 15% lower profit than if the firm had correctly

assumed positive correlations.35 This provides a degree of assurance that profits are indeed

sensitive to prices in our experiments.

4 Estimation of Joint Distribution of Consumers’ Valuations

An obvious limitation of the numerical experiments in Section 3 is that we cannot be certain our

results will transcend the particular parameter values we covered. For this reason, the second

component of our analysis utilizes an estimated model, based on data from a theater company

that offers an 8-play season. Given these estimates, we compute the profitability of each pricing

strategy, allowing us to demonstrate that our findings apply to an empirically relevant model.

In this section we address the problem of how to estimate the joint distribution of consumers’

valuations from available data. It is important that such an approach allow for non-zero covari-

ances in tastes, because covariance is a major determinant of the relative profits from different

bundling-type schemes. This rules out one commonly made assumption in demand estimation:

that unobserved tastes have a logit distribution. Of course, we are not the first to estimate

covariances in a demand system: recent examples include Bajari and Benkard (2005) and Hart-

mann and Viard (2007); see also Allenby and Rossi (1999) for a review of the earlier literature

on flexible estimation of demand heterogeneity. It is also important that our approach allow for

consumers to purchase multiple products. This is somewhat non-standard in demand estimation

based on discrete choice models where it is commonly assumed that consumers choose at most

one product. However, at least a couple of prior papers have relaxed this assumption to allow

for multiple purchases in discrete choice settings, such as Dubé (2004) and Hendel (1999).

Several features make our particular empirical example an appealing context in which to
35These experiments were performed for K = 2, ..., 5 and with both zero and positive marginal costs. We also

considered a variety of other examples of mistaken beliefs. The results were qualitatively the same in all cases.
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study multiproduct pricing. First, the plays differ in their overall popularity, making it plausible

that CP would be a sensible pricing strategy. Second, many consumers attend more than one

play, making it plausible that bundling strategies may also be profitable. Third, individuals do

not consume multiple units of the same play. Fourth, the assumption of no demand or cost

interdependencies is reasonable. Fifth, we are confident there is no significant resale activity—

these are plays produced by a small theater company, not rock concerts or professional sports.36

For all of these reasons, our empirical example is a remarkably clean setting, in which we can

abstract from the same complicating factors that theoretical analyses of bundling typically do.

A by-product of the analysis is that we measure the impact of each pricing strategy on

consumer welfare. This is interesting because bundling, like price discrimination more generally,

has ambiguous effects on consumer welfare relative to uniform pricing.37 To the best of our

knowledge, there is one prior empirical analysis of bundling. Crawford (2006) tests the hypothesis

that consumers’ demand for a bundle of cable channels becomes less heterogeneous as more

channels are added to the bundle, which he finds to be the case. Based on a calibrated demand

model, Crawford argues that adding a top-15 cable channel to a bundle and re-optimizing prices

leads to 5.5% lower consumer surplus, and 6.0% higher profit.38

4.1 Data Summary

The data for our empirical analysis come from TheatreWorks, a theater company based in Palo

Alto, California. We observe all ticket sales for TheatreWorks’ 2003–2004 season, which consisted

of 229 performances of 8 different plays or musicals. Table 9 provides summary information for

each of the 8 plays. A total of 69,207 tickets were sold to the 8 plays.

Consumers could purchase tickets to individual plays at a uniform price, but most of the

tickets (80%) were purchased as part of a subscription. TheatreWorks offered 3 subscription

packages: (i) the full 8-play season; (ii) any combination of 5 plays; or (iii) a pre-specified

bundle of 3 plays.39 These subscriptions were offered at discounted prices, in the sense that

the per-play price was significantly lower for subscriptions than for ordinary box office sales for

individual plays.
36See Leslie and Sorensen (2007) for an empirical analysis of ticket resale.
37See Leslie (2004) for a similar empirical analysis of the welfare effects of price discrimination, which also

happens to be in the context of theater ticket pricing.
38Two studies in the marketing literature use survey response data to estimate demand and compare profits

from UP, PB and MB: Venkatesh and Mahajan (1993) and Jedidi, Jagpal and Manchanda (2003).
39The pre-specified bundle consisted of the only 3 plays that were performed at TheatreWorks’ secondary venue,

a smaller theater in Palo Alto, CA.
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Table 10 summarizes the purchase options and their average prices.40 Subscribers, by defini-

tion, purchase tickets to multiple plays. Importantly, non-subscribers may also purchase tickets

to multiple plays, and indeed we observe this in the data. However, among the non-subscribers,

we can only identify multiple-play purchasers if the tickets were mailed to them (in which case

we observe their name and address). This was the case for 45% of the tickets purchased by non-

subscribers. The rest were purchased anonymously at the box-office, and for these purchases we

have no way of knowing if the individual also purchased tickets to other plays. For the purpose

of Table 10, we assume the sample of non-subscribers for whom we observe mailing information

is a random subset of all non-subscribers, and extrapolate the same pattern of multi-play pur-

chases to the entire set of non-subscribers. This helps to provide a more complete description

of the sales patterns in the data. We do not rely on this assumption in estimation, as explained

below.

As shown in Table 10, there were 5,139 subscribers to the 8-play bundle, 2,794 subscribers

to a 5-play bundle, and 205 subscribers to the 3-play bundle. The popularity of the flexible 5-

play subscription is a particularly important feature of the data. Observing which 5 plays these

subscribers selected allows us to identify the covariance of tastes across plays—e.g., if we observe

that two plays tend to be included together disproportionately often in the 5-play combination,

we know that tastes for those two plays are more positively correlated. Conversely, if another

pair of plays is rarely included in the same bundle, we can infer that tastes for those two plays

are less positively correlated. This information is crucial to our analysis. If we had only data

on aggregate sales for each play we would be unable to identify the covariance structure of

demand. Berry, Levinsohn and Pakes (2004) utilize a similar identification strategy in their

study of demand for cars, in which they exploit second-choice data to help identify cross-price

elasticities.

Table 11 summarizes the correlations within the sample of pick-5 purchases: it reports the

difference between the empirical correlations of the choices and the correlations that would be

expected if tastes were independent.41 The patterns make intuitive sense. For example, tastes

for Bat Boy, described in the brochure as a “wacky new musical,” are positively correlated with

tastes for Memphis, described as a “rafter-rattling musical comedy.” Conversely, tastes for Bat

Boy are negatively correlated with All My Sons, a classic Arthur Miller drama billed as an

“intense, compelling tale of love, greed, and personal responsibility.”
40In fact prices also vary by time of week (but not by play). We therefore report simple (unweighted) averages

of these prices. Note also, prices do not vary by seat quality. This is because the venues are small enough that
the variation in seat quality is fairly minor.

41Since each consumer selected 5 plays from 8, the pairwise correlations will be nonzero even if tastes are
independent. The expected correlation if plays are chosen independently is -1/7.
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4.2 Empirical Model

The empirical specification is based on an underlying model of individual consumer utility max-

imization, and follows the approach in the theoretical literature on bundling. The firm offers

j = 1, ..., J−1 bundles containing combinations of the k = 1, ...,K products. There is also a J th

option for consumers which is the outside alternative. We assume the net utility to consumer i

from option j is given by

uij =

 V ′
i Dj − αpj : j = {1, ..., J}

0 : j = J

where Vi is a K × 1 vector of valuations for the individual plays, Dj is a K × 1 vector of

indicators for whether each play is included in bundle j, pj is the price of the bundle, and α > 0

measures the sensitivity to price. As always in the bundling literature, we assume there are no

demand-side complementarities from consuming particular plays together.

We allow for two classes of consumers: theater-lovers and regular consumers. In fact the

data support this description, as we explain below in the subsection on identification. Formally,

we assume that consumers’ product valuations are distributed according to a K-dimensional

bimodal normal distribution, with censoring at zero to incorporate free disposal:

Vi = max{θi + εi, 0}, where

θi =

 θ̄ : probability λ

0 : probability (1− λ); and

εi ∼ N (µ,Σ) .

In this notation, µ is a K×1 vector of means, Σ is a K×K variance-covariance matrix, and θ̄ is

a scalar additive component (equal for all plays). A fraction λ of consumers are theater-lovers,

for whom the marginal distribution of play valuations is shifted upward by some amount θ̄ that

is constant across plays. A fraction (1− λ) are regular consumers with no particular preference

for seeing plays in general. In the next subsection we discuss how the data identify λ and θ̄.

The conditional means of V are not well-identified separately from the variances. Intuitively,

increasing the variance in valuations for a particular play and increasing the mean of the val-

uations for that play both lead to higher demand for the play. To address this we impose the

restriction that all mean terms equal zero (µ(k) = 0, ∀k), but leave the variance-covariance

matrix unconstrained.42 In fact we also estimated the model based on the restriction that all
42We also normalize the variance of valuations for play (1) to equal 1: Σ(1, 1) = 1.
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variances equal one and the mean terms are unconstrained, but we found that version to be too

restrictive in the following sense: BSP is always more profitable than CP, even in counterfactuals

where we dramatically increase the asymmetry across products by making the mean valuations

for each play very different across plays. In contrast, in the specification with free variances it

is possible that either CP or BSP may be more profitable, depending on the particular values

of the variance terms. We viewed this as a desirable attribute for the model. Note that our

approach has the implication that a high quality play will have a higher variance in consumers’

valuations—i.e. our model captures quality via the variance terms rather than the means, which

is unconventional in the literature.

The season of 8 plays implies 255 possible product combinations. This includes each individ-

ual play, the preset bundle of 3, the full bundle of all 8, 56 possible combinations of 5 plays (for

pick-5 subscribers), and any other combination by consumers adding individual plays. In fact we

observe zero sales of bundles of six or seven plays. We therefore exclude these combinations from

the consumer’s choice set. Hence, we model the demand for 219 different bundles, plus an outside

alternative, giving a total of 220 possible choices (i.e. J = 220). Note that capacity constraints

are infrequently binding in the data—only 27 of the 229 performances were sold out—leading

us to abstract from their impact in the estimation. In the subsequent counterfactual analyses

we check whether capacity constraints are binding.

Recall that for non-subscription purchases we cannot always determine whether the individ-

ual purchased multiple plays, because roughly half of these purchases were made anonymously

at the box office. This means that we do not observe market shares for combinations involv-

ing fewer than 5 plays purchased by the same individual. For this reason, we estimate the

model’s parameters by the method of simulated moments (see McFadden (1989) and Pakes and

Pollard (1989)). Using a method of moments approach allows us to treat this data problem

conservatively, without throwing away information that we do have from non-subscription pur-

chases. Specifically, we only use moment conditions that are based on market shares we directly

observe:

• Share of consumers who chose all 8 plays (1 moment condition)

• Shares of consumers choosing specific combinations of 5 plays (56 moment conditions)

• Share of consumers choosing the pre-set bundle of 3 plays (1 moment condition)

• Overall market shares of each play: i.e., what fraction of consumers purchased a given play

as part of any bundle (8 moment conditions).
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The last set of moment conditions utilizes information from non-subscribers without imposing

any assumptions about their pattern of multi-play purchases.43

To ensure that the estimated demand model yields predicted prices that are close to the

observed prices, we impose a supply-side pricing constraint in the estimation.44 For any given

set of parameters of the above demand system, we can compute the profit-maximizing prices

under the actual TheatreWorks pricing structure: a price for any individual play, a price for the

preset bundle of 3, a price for choosing any 5, and a price for all 8 plays.45 Solving for these

prices for each iteration of conjectured parameters is computationally burdensome, however, so

we simplify the constraint in the following way. Rather than jointly optimize all four prices

in the TheatreWorks pricing scheme, we jointly optimize the price of any individual play and

the price of all 8 plays. We then “fill in” the 3-play and 5-play prices by assuming their ratios

to the single-play price are equal to the ratios actually set by TheatreWorks. This reduces the

number of prices we must optimize from 4 to 2, which we found to be essential for computational

feasibility. Hence, the specific constraint we impose is that the predicted single-play price, and

the predicted price for the subscription to all 8 plays, are equal to the observed prices.46

To compute the share of the outside option (j = 0) we must know the market size, M . Usually

researchers choose the market size based on some information about the number of potential

consumers. In our case, an additional benefit to utilizing a supply-side pricing constraint is that

we can estimate the market size instead of assuming some value for it. We explain how the price

constraint identifies the market size in the next section.

Including α, Σ, θ̄, λ, and M , we estimate a total of 39 parameters. Let Θ denote the set of

parameters to be estimated. For a given set of parameters, Θ, we draw ns simulated consumers

based on the above distribution of product valuations, compute the optimal bundle choice for

each simulated consumer, and compute optimal prices. The estimator chooses the parameters

Θ to match the market shares among the simulated consumers to the market shares we observe

in the data, conditional on predicted prices being equal to actual prices.
43In a previous version of this paper, we imputed multi-play purchases among “anonymous” non-subscribers

using the patterns we observe for the identifiable non-subscribers (i.e., the same approach utilized in Table 10,
discussed above), and estimated the model via simulated maximum likelihood. The results are very similar to
those we report below.

44In an earlier version of this paper we estimated the demand model via simulated maximum likelihood without
any price-setting conditions. This led to predicted prices that tended to be significantly lower than the observed
prices.

45Since capacity constraints are rarely binding in the data, we assume zero marginal costs when solving the
profit-maximization problem.

46In practice we are within 1e− 4 of equality in these conditions.
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More formally, let s̃l and sl denote the simulated and observed market shares, respectively, for

purchase option l. Let p̃1(Θ) denote the implied optimal single-play price for given parameters

Θ, and let p1 denote the actual single-play price. Similarly, let p̃8(Θ) and p8 denote the implied

and actual full season subscription prices. Define p̃ and p as the stacked vectors of predicted and

observed prices. We construct moment conditions of the form ml(Θ) = s̃l(Θ)− sl, and select Θ

to minimize m′Wm subject to the constraint p̃ = p, where m is the stacked vector of moment

conditions, and W is a weighting matrix.

4.3 Identification

What variation in the data serves to identify each parameter of the demand model? The vari-

ance terms, Σ(k, k), are identified by the plays’ relative overall market shares: relatively high

share plays must have relatively higher variances. Note, however, that the observed ranking of

market shares need not be a one-to-one mapping with the estimated play variances, because the

covariance terms in Σ also have an impact on choice probabilities. For example, a given play

can have a high market share either because the variance in valuations is high, or because it has

a strong positive correlation with another high-variance play.

The covariance terms themselves are identified by the bundle combinations chosen by multi-

play buyers, such as the pick-5 subscribers. Pairs of plays that consumers choose to bundle

relatively often will have more positive covariances. We might expect the estimated covariances

to be similar to the empirical covariance matrix shown in Table 11. However, the estimated

covariances are based on a model in which we control for play qualities and prices, and we

utilize the complete dataset.47 Hence, we only expect some degree of similarity. Note also, while

a large fraction of consumers choose to subscribe to the full season of all 8 plays, this does not

necessarily imply strong positive covariances, because other features of the model can explain

this particular behavior, as we explain below.

The degree of price sensitivity, α, is identified by variation in per-play prices across bundles.

Because TheatreWorks’ pricing involves discounts for larger bundles, consumers’ sensitivity to

price explains why market shares for larger bundles are higher than would otherwise be the case.

An additional source of pricing variation comes from the fact that one specific 3-play bundle

is offered at a discount ($36.20 per play) while all other 3-play combinations have no discount

($40.80 per play). The taste distribution alone may explain why a specific 3-play bundle is more
47For example, the relatively large number of full season subscribers will encourage more positive covariances

in the demand estimation.

25



popular than other 3-play bundles. Hence, α is identified by the extent to which demand for the

discounted 3-play bundle exceeds the demand implied by the taste distribution alone. We also

assume there are no complementarities in demand between these particular plays, which seems

reasonable in this context. Imposing the supply-side pricing condition also helps to assure a

reasonable estimate of price sensitivity.

A standard concern with demand estimation is the possibility that observed prices are cor-

related with unobserved demand shifters, which may bias parameter estimates. However, in the

estimation we integrate over all unobserved demand components. There is no remaining error

term that may be correlated with observed prices. Consider, for example, the discounted 3-play

bundle. We estimate the variances and covariances of the taste distribution—i.e., we control for

the qualities of these plays, and we control for the tendency of consumers to want to bundle these

particular plays together. The fact that this specific bundle is offered at a discount is exogenous

variation for our purposes. Stated differently, we assume there are there are no bundle-specific

error terms. And even if there were, endogeneity is only a concern if bundle-specific errors vary

systematically by bundle size, because TheatreWorks’ prices are in any case only dependent on

the total number of plays (with the exception of one particular three-play bundle).

How do the data identify θ̄ and λ? This aspect of the model is important for explaining a key

feature of the data. Suppose that θ̄ = 0 (or equivalently, λ = 0). In this case, the relationship

between bundle size and market share depends on the degree of correlation in tastes for plays, but

in a very particular way. If play valuations are weakly or negatively correlated, the probability

of a consumer having high valuations for all 8 plays is less than the probability of having high

valuations for any 5 plays, say. Hence, controlling for the effect of price, the number of 8-play

subscribers would be less than the number of 5-play subscribers. Similarly, the number of 5-

play subscribers would be less than the number of four-play subscribers, and so forth. On the

other hand, the higher the degree of (positive) correlation, the more often we ought to observe

purchases of larger bundles. But in Table 10 we see that purchases by bundle size are heavily

skewed toward both individual purchases as well as purchases of all eight plays. This pattern

cannot be explained by a simple joint-normal distribution, because the two most commonly

purchased bundle sizes convey conflicting information about the correlation in play valuations.

This is why we distinguish theater-lovers in the demand model (i.e. the reason for including λ

and θ̄).

Clearly, the relatively high fraction of 5-play and 8-play subscribers serves to identify θ̄ and

λ. But how are these parameters separately identified? Since the number of single-play and

8-play buyers are both greater than the number of 2, 3, 4 or 5-play buyers, λ must not be too
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large or too small. If λ is near to one, nearly everyone is a theater-lover, and the model would

predict a low level of single-play sales. If λ is near to zero, we have the same problem described

in the previous paragraph. This logic implies that λ is identified by the ratio of subscribers (i.e.,

5-play and 8-play buyers) to non-subscribers (i.e., buyers of fewer than 5 plays).

Applying similar logic, if θ̄ is very large then all theater-lovers will choose the 8-play bundle. If

θ̄ is near zero then we have the same problem described above: we cannot explain the bimodality

of market shares in the data. Therefore, the role of θ̄ is to deliver an accurate prediction of the

ratio of 5-play subscribers to 8-play subscribers. Hence, λ and θ̄ are identified by separate

features of the data.

The supply-side price constraints provide identification of the market size, M . To see why,

consider estimation of the demand model without price constraints. In this case we would simply

assume a market size, estimate all other parameters using demand-side information only. While

this approach can deliver a good fit of the observed market shares, there is no assurance that

the optimal prices for the estimated demand model will be equal to the observed prices. In fact,

if we set the market size to 100,000 and estimate using demand-side moments only, we compute

predicted optimal prices that are significantly less than the observed prices. This suggests α is

over-estimated—consumers are too sensitive to price.

By reducing the stipulated market size, the actual market share of inside goods increases.

This implies the estimate for α must decrease in order to predict higher probabilities of pur-

chase.48 Importantly, optimal prices depend on α but not M . Hence, lowering M leads to a

lower estimate of α, which in turn leads to higher predicted optimal prices. We can therefore

estimate M by incorporating an optimal pricing constraint in the estimation. This is why the

supply-side pricing constraints provide identification of the market size, and allow us to fit the

demand moments while generating reasonable predicted prices.

A final comment on the flexibility of the model. Notice from the last two columns of Table 9

that the rank-ordering of play popularity is different for non-subscribers (mainly single-play

buyers) than it is for subscribers (which is driven by the tastes of pick-5 buyers because full

season buyers attend all plays). Our specification can explain this difference in the following

way. The variance terms, Σ(k, k), explain the relative popularity of plays among the single-

ticket buyers. The covariance terms in Σ explain the popularity of certain pairings by the pick-5

buyers, which also helps to explain differences in the popularity of plays that are contrary to
48This reasoning suggests α and M are not separately identified from demand-side moments alone. From a

practical standpoint this is right, since rich variation in the data is needed for separate identification. Formally,
however, α and M are separately identified from demand moments, based on functional form.
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the rankings of the single-ticket buyers. In other words, allowing for covariance in tastes gives

us the flexibility to explain differences in play shares between single-play buyers and multi-play

buyers.

4.4 Results

The parameter estimates for the structural demand model are presented in Table 12a. (Standard

errors for the variance-covariance matrix are reported in Table 12b.) Estimates of the variance

coefficients from the distribution of ε vary from 1.00 to 3.18. The estimates for the covariances of

ε vary from 0.78 to 1.91. It is important to note that Σ is the covariance matrix of ε. That is to

say, Σ captures the correlation structure conditional on being a theater-lover, or conditional on

not being a theater-lover. However, the correlation structure of the unconditional distribution

of play valuations, V , also depends on the probability of being a theater-lover and the increment

in utility for these consumers. Intuitively, taste correlations should be even more positive than

for the unconditional distribution, because theater-lovers have a positive shift in the valuations

of all plays.

When we compute pairwise correlation coefficients for the unconditional distribution of play

valuations, we find that all correlations lie between .60 and .97 (the mean correlation coefficient

is .81). This is important because positive correlation in the demand system tends to reduce the

profitability of bundling-type strategies relative to component pricing. We return to this issue

in the next subsection on counterfactual pricing experiments.

The estimate for consumers’ sensitivity to price (α) is 4.60. To compute the implied price

elasticity of aggregate demand, we increase the price of all possible bundles of tickets by 1% and

measure the change in total tickets sold to all plays. The resulting price elasticity of aggregate

demand is 1.11. Interestingly, when we implement this calculation the demand for certain

mid-sized bundles actually increases, despite increasing price for those bundles. Intuitively, a

1% increase in all prices causes some consumers to substitute away from large to smaller-sized

bundles. For example, demand for the Lucie Stern combination of 3 plays increases by 43% in

response to a 1% increase in all prices.

The estimated probability of an individual being a theater-lover is .077, and the estimated

market size is 37,435. We estimate that theater-lovers’ utility for any single play is higher than

for regular consumers by an amount equal to 2.05 times the standard deviation of the conditional

valuation of play 1 (A Little Night Music), which is normalized to 1. The large magnitude of the
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increment to utility for theater-lovers suggests that large-sized bundles are disproportionately

purchased by theater-lovers. Indeed, this is true. Our estimated demand model predicts that

63% of non-theater-lovers choose the outside option, while the predicted proportions choosing

1, 2, 3, or 4 individual goods are 12%, 4.3%, 1.7%, and 0.17%. Among this same group of

consumers, the predicted market shares for the Lucie Stern, pick-5, and all-8 combinations are

0.75%, 8.6%, and 9.5%. For theater-lovers, on the other hand, only 8% choose the outside good,

while 13% choose a bundle of 5 (accounting for 11% of pick-5 purchases), and 68% subscribe to

all 8 plays (accounting for 37% of all-8 purchases).

The non-monotonicity of predicted market shares with respect to bundle size, even among the

set of non-theater-lovers, is consistent with the high degree of correlation in the estimated dis-

tribution of tastes for individual plays (both unconditionally as well as conditionally on theater-

lover status): consumers tend to either like most of the plays, or none at all. However, the

model requires the presence of theater-lovers to explain why the observed market shares decline

relatively gradually with respect to size in the lower range of bundle size, while rising abruptly

for the largest bundles.

To evaluate the fit of the estimated model, we compare various measures of actual and

predicted market shares. We find a reasonably close fit between the actual and predicted overall

market shares for different bundle sizes, where we compute the actual shares using the estimated

market size as the denominator. The actual fraction that choose to be pick-5 subscribers is 7.5%,

and we predict 8.9%. The actual fraction all-8 subscribers is 13.7%, and we predict 14.0%.

In Table 13 we present actual and predicted shares of sales for each play. In the top portion

of the table we show the play shares for all consumers (ignoring the outside option). Even

though the predicted shares vary across plays from 19.5% to 29.3%, the actual and predicted

shares are all within 1.5 percentage points, except for the first play. The fit is more uneven

when we condition the play shares on how they are bundled. The predicted conditional shares

nevertheless capture a key feature of the data: market shares are quite skewed for unbundled

sales, while being much more symmetric for the pick-5 subscribers.49 For example, the most

popular show among single-play purchases is play (4) with an observed share of 37.7%, more

than four times that of play (2) which is the least popular show among single-play buyers.

By contrast, among pick-5 sales, the most popular show, play (8)—with a share of 14.6%—is

purchased only slightly more often than the least popular show, play (3)—at 10.3%.

The estimated variances and covariances play a critical role here. Note, for example, that
49By construction, the play shares must be identical when conditioned on being bundled as part of the all-8

package.
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the market share for play (4) among unbundled sales is high relative to its popularity among

pick-5 sales. The model explains this fact in part by estimating a large variance for play (4) in

conjunction with relatively low correlations with all the other plays: the high variance together

with low correlations imply that play (8) will have high demand individually, but will tend not

to be purchased together with other plays.

4.5 Analysis of Alternative Pricing Strategies

In this subsection we compare the profitability of the various pricing schemes in the context of

our estimated demand model. We also examine how particular changes in the model affect the

relative profits of these different pricing structures.

Counterfactual Pricing Analysis

Using the estimated demand model, we compute profits and consumer surplus under each

of UP, PB, CP, BSP and MB. We also compute the profit associated with the pricing scheme

actually implemented by TheatreWorks, referred to as TW. Under TW the firm sets a uniform

price for each play, a discount for one particular 3-play bundle, a discount for choosing any 5

plays (pick-5), and a discount for the bundle of all 8 plays. In our baseline model we assume zero

marginal costs and no capacity constraints, which seems reasonable given how few performances

sold out. Below, we examine how capacity constraints would affect the relative profits of the

different pricing strategies.

Recall that in the estimation we impose a supply-side pricing constraint based on two of

the four prices under the TW scheme: i.e. the single-play price and the price for all 8 plays.

In estimation these two predicted optimal prices exactly match the observed prices (to within

1e-4). However, in the TW counterfactual we jointly optimize all four prices. Hence, we expect

the TW counterfactual prices to be close to the actual prices, but not necessarily equal.

Table 14 summarizes the results. The interpretation of the prices (p1, ..., p8) varies across

regimes, as explained in the note to the table. The revenue and consumer surplus (CS) results

are normalized by the market size (i.e. figures are per consumer). Profits from the different

pricing schemes vary from 63.67 under PB to 69.50 under MB (a difference of 9.2%). In this

case the variability in profits across price structures is somewhat low compared to many of the

simulations in Section 3. Nevertheless, it is clear that the choice of price structure can be an

important decision.
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It is interesting that PB is the least profitable of the pricing strategies we examine. Bakos

and Brynjolfsson (1999) and Fang and Norman (2006) show that PB becomes more profitable

(relative to CP) as the number of goods increases (with zero marginal cost). But in this example

with 8 goods, PB performs quite badly. Even UP is more profitable than PB in this setting

(by 5%). This reinforces the point that PB is not necessarily a good option for firms.

Focusing on BSP in Table 14, we find that: (i) BSP attains 0.9% higher profit than CP, and

(ii) BSP attains 98.5% of the profit from MB. These results are striking for a couple of reasons.

MB requires the firm to set 255 distinct prices in this example, while BSP involves only 8 prices.

It is also important to note that our empirical example happened to yield an estimated demand

system that is somewhat unfavorable to bundling-like strategies. We find a very high degree of

positive correlation in valuations—all correlations lie between .60 and .97. The fact that BSP is

more profitable than CP in this setting is interesting, even if the differences are not economically

large.

Under BSP the price per play varies from $56.41 (for one play) to $32.89 (for all 8 plays)—a

discount of 42% on the single play price for full season subscribers. Note also that under BSP the

price for seeing a single play ($56.41) is greater than the maximum price for any play under CP

($44.08). As explained in the previous section, BSP encourages consumers to purchase multiple

plays by a combination of raising the price for one play and lowering prices for multiple-plays.

Under CP there are 9.9% of consumers that attend exactly one play, while under BSP only 2.6%

of consumers attend just one play. Under CP there are 9.0% of consumers that attend all 8

plays, while under BSP 12.6% do so.

It is interesting to compare the performance of CP and BSP in relation to the highest-demand

play. One tends to expect that CP will generate more profit from these kinds of products than

would BSP, although we have argued and demonstrated that BSP is also effective at extracting

surplus in the presence of asymmetric demand. The play with the highest demand is play four—

under UP play four has the highest level of sales, and under CP play four has the highest optimal

price. For CP we compute that 25.2% of consumers attend play four, and by construction every

ticket is sold at the price $44.08. Under BSP we find that 27.1% consumers attend play four.

The average (per play) price paid by consumers that attend play four under BSP is $36.70. It

follows that BSP obtains 21% less revenue from play four than does CP.50 Since BSP attains

higher overall revenue, it must be that BSP extracts more surplus than CP for the lower demand

plays. For example, we find that BSP yields 7% more revenue for play one (the lowest-demand
50Revenue is synonymous with variable profit in this context, because the marginal cost of each ticket is zero.

Since we have no information on fixed costs we do not refer to these numbers of profits.
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good) than CP.

The fact that CP generates more revenue than BSP for the popular good is not a general

result. For other parameterizations of demand we may find the reverse. It is interesting to

note that under BSP there is price dispersion among the consumers that attend play four (or

any other particular play), and the amount of surplus that the firm extracts from consumers

of popular plays depends on whether these consumers pay higher or lower prices, on average.

In our simulation, under BSP 46% of consumer that attend play four did so as part of the

full-season subscription, for whom the per-play ticket price is $32.89. At the other extreme,

for 8% of the attendees of play four this was the only play they attended, and hence the ticket

price for them is $56.41. And there are six other price points in between, depending upon how

many other plays the consumer purchased tickets for. The distribution of ticket prices paid by

attendees is different for each play under BSP. For example, under BSP nobody buys a ticket

to play one by itself, and hence the highest price paid by any individual attending play one is

$46.92 (i.e. per-play price for a two-good bundle).

The within-play price variation that arises under BSP is a consequence of people self-selecting

different size bundles. Sorting occurs along the dimension of the total number of plays. That

is, consumers with a high aggregate valuation for multiple plays tend to purchase larger-sized

bundles and pay a higher total price. But this sorting under BSP does not necessarily imply that

in a given play, consumers with a high valuation for that play will pay a high price for attending

that play. Consider the consumers that attend play four under BSP: the correlation between

consumers’ valuations of play four and each consumers’ per-play price is -0.12. Intuitively, this

is due to the high degree of positive correlation in the estimated demand system—consumers

that like play four also tend to like many other plays, and therefore tend to obtain discounts for

buying larger bundle sizes. For the same reasoning, if demand system exhibited a high degree of

negative correlation, we would expect the within-play correlation between price and valuations

to be positive. It follows that the less positive correlation there is in the demand system, the

more surplus BSP extracts from higher-demand goods, relative to CP.

As expected, we predict optimal prices under TW that are very close the actual prices set

by TheatreWorks.51 The predicted single-play price under the TW scheme is slightly higher

than the observed price set by TheatreWorks, and the predicted full-season subscription price is

slightly lower than the actual price. Our estimated model indicates more aggressive discounting

than TheatreWorks’ actual price schedule, but not by much. The TW price structure appears
51To understand why optimal prices are not exactly equal to actual prices, recall that in the estimation, we

only impose the optimality of the individual-play and all-8 prices, rather than the full set of prices.
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to perform quite well in the counterfactuals. As shown in the table, the profit under TW is

marginally less than for CP, despite the fact that TW involves half the number of prices as CP.

This reinforces the value of bundling-like strategies, since TW incorporates a degree of bundling

into its structure.

Model Perturbations

Given our estimates of demand, it is clear that BSP is the superior pricing strategy among

the simple alternatives we consider. To evaluate the robustness of this conclusion, we ask how

we would have to change the demand system to reverse the conclusion.

We have emphasized throughout this study that BSP is able to perform well even in the

presence of highly asymmetric demand. As a measure of asymmetry, in the baseline model

above, the highest price for a play under CP ($44) is almost 60% greater than the lowest price

($28). But what if we amplified this difference? How much would we have to exacerbate the

differences in plays’ qualities to make CP more profitable than BSP? To examine this question,

we took min-preserving spreads of the estimated variances (holding all other parameters fixed),

and recomputed the optimal prices and profits under the various pricing strategies.52 We find

that BSP remains more profitable than CP even when the highest price for a play under CP

($95) is 340% greater than the lowest price play ($28). However, if the price difference increases

to over 385% (price range of $28 to $108) then CP attains higher profit than BSP. Hence,

increasing demand asymmetry favors CP, but it takes a remarkably high degree of asymmetry

for CP to be more profitable than BSP.

As explained above in the context of the numerical experiments, positive marginal costs

should typically favor CP over BSP. If we recompute optimal prices based on the estimated

demand model, assuming positive marginal costs, we can indeed get CP to be more profitable

than BSP. However, the required level of marginal cost is extremely high: only when we set

marginal cost as high as $40 does CP become more profitable than BSP. We suspect this is due

to the high degree of positive correlation in consumers’ tastes, for the following reason. Positive

marginal costs tend to be bad for bundling strategies because consumers who purchase bundles

may end up consuming products they value below cost, shrinking the extractable surplus from

bundles. But when valuations are highly positively correlated, such violations of the “exclusion”

condition will be relatively rare. It would be interesting to explore the combined effects of

52That is, we hold the variance of the lowest-variance play at the estimated value, min[Σ̂(k, k)], and increase
the remaining variance terms such that they differ from min[Σ̂(k, k)] by ∆ times the corresponding differences in
the actual estimates. At the same time, we inflate the covariances such that the correlations remain the same as
in the actual estimates.
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marginal costs and correlations in tastes in more detail, but for the present purposes we simply

note that BSP’s superiority over CP is remarkably robust to increases in marginal cost.

Capacity constraints, which we have so far assumed away, could also favor CP over BSP. To

assess the impact of capacity constraints, we assume capacity is equal for all plays, and is set to

∆% of the predicted sales for the most popular play under UP (where UP is computed under the

assumption there are no capacity constraints). How small must ∆ be (i.e., how tight does the

capacity constraint have to be) for CP to be more profitable than BSP? We find that if ∆ = 90,

BSP is still more profitable than CP, but if we lower it to 80 then CP becomes more profitable

than BSP. Hence, it appears the greater is excess demand (i.e. the lower is capacity relative to

demand) the more likely that CP is more profitable than BSP. Regardless, for TheatreWorks

(as well as many other firms) the capacity for each good is to some extent endogenous. This

makes it less likely that capacity constraints are a reason to prefer CP over BSP when capacity

is a choice variable for firms.53

While it is true that we can make CP more profitable than BSP by significantly amplifying

demand asymmetries or by imposing relatively tight capacity constraints, note that our esti-

mated demand model exhibits a high degree of positive correlation in tastes. To highlight the

degree to which positive correlation is disadvantageous to BSP, we re-compute optimal prices

with all the estimated covariances set to zero, holding fixed all other estimated parameters. In

this case, BSP is a dramatic 20.5% more profitable than CP.

Finally, we argued in Section 3 that the inclusion of diminishing marginal utility may reduce

the profit from CP by even more than it does for BSP. To verify this claim we generalize the

utility function in the demand model in the following way:

uij =

 V ′
i Djn

γ
j − αpj : j = {1, ..., J}

0 : j = J

where nj equals the number of goods in bundle j and γ is a parameter. We set γ = −.2 to

capture diminishing marginal utility, and compute optimal prices holding all other parameters

fixed at the estimated values under the baseline model.54 Unsurprisingly the profits under all

pricing schemes are lowered relative to the baseline. But now BSP attains 8.8% higher profit

than CP, compared to 0.9% in the baseline model. Hence, the inclusion of diminishing marginal

utility can increase the profits of BSP relative to CP.

As we found in the numerical experiments discussed in Section 3, the above perturbations to
53In fact TheatreWorks offers more performances for some shows than for others, suggesting they choose ca-

pacities for each play (see Table 9).
54Implicitly, γ = 0 in the baseline model.
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the estimated demand model demonstrate that in some cases BSP is more profitable than CP,

and in other cases the reverse is true. What is striking about the perturbations we analyze here

is that it requires rather dramatic changes to the estimated model for CP to out-perform BSP.

That is to say, the relative profitability of BSP seems very robust in our analysis.

5 Conclusion

We have examined the profitability of several incomplex pricing strategies for multiproduct

firms, relative to the impractical ideal of mixed bundling. Rather than focus on a simplified

and unrealistic model of demand, we have relied on computational methods to explore these

issues in a wide variety of demand and cost scenarios. The analysis yields two main findings.

First, bundle-size pricing tends to attain nearly the same level of profits as mixed bundling

in a broad range of demand and cost scenarios. Hence, mixed bundling involves considerable

redundancy—it includes many prices that are of negligible importance to profitability. Second,

bundle-size pricing tends to be more profitable than component pricing, even in circumstances

with a high degree of demand asymmetry across products.

To illustrate the empirical relevance of our findings we estimate the demand facing a theater

company that produces a season of 8 plays, and compute the profitability of each pricing scheme

in this case. We find that bundle-size pricing is 0.9% more profitable than component pricing,

and bundle-size pricing attains 98.5% of the mixed bundling profits. Since the estimated demand

model exhibits a very high degree of positive correlation, these results may understate the gains

from BSP in other settings. Arguably, a limitation of our empirical analysis is that it concerns

a fairly narrow setting. However, we see the simplicity of our example as a virtue: “bigger”

examples invariably involve additional complexities (such as active resale markets, a much larger

number of products, etc.) that make a clean empirical analysis infeasible.

Our results represent a significant push towards understanding the merits of feasible pricing

schemes for multiproduct firms. What insight does the prior literature on bundling have for

a firm with 5 products, say? A narrow reading of the literature would imply the firm should

implement mixed bundling with 31 prices, which is unlikely to be practical for most firms. A

broader interpretation of the literature would suggest the firm should consider some form of

bundling—which is a powerful insight—but it is unclear exactly what form that should be. This

paper suggests specific advice to such a firm; bundle-size pricing (5 prices) tends to attain about

99% of the mixed bundling profit, and is almost certainly more profitable than either component
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pricing or pure bundling.

An important theme of our findings is that bundling-like pricing schemes are often more

profitable than component pricing. This is interesting because economists are prone to criticize

firms for the lack of component pricing (e.g. movie cinemas). In fact, the appeal of bundling over

component pricing is reflected in the pricing of some notable multiproduct firms. Major league

baseball teams, for example, tend to employ bundling strategies (such as discounts for purchasing

any 9 games) more often than they employ component pricing strategies (such as charging prices

that vary by opponent or by day of the week).55 Also, online music sellers almost never charge

different prices for different music tracks, even though demand is dramatically stronger for some

songs than others. But music is sold via subscriptions (a strategy akin to pure bundling) by

at least two of the major online music stores. And while television service providers typically

do not charge different prices for different channels, some offer discounts that depend on the

number of channels selected.56

More generally, our results suggest an additional explanation for the observed simplicity of

multiproduct firms’ pricing strategies. Other authors have proposed various theories to explain

why, in practice, complex pricing schemes are costly to implement.57 Our study is the first (to

our knowledge) to quantify the benefits of complexity. Our findings suggest these benefits are

generally small, so that the costs of complexity need not be large to make simplicity the best

policy.

55We examined the pricing for all 30 major league teams during the 2006 season. 16 teams employed some form
of bundling (not including season-ticket subscriptions), whereas only 7 charged prices that varied by opponent or
by day of the week.

56See British Sky Broadcasting for a clear example: www.sky.com/portal/site/skycom/products/packages.
57See, for example, Blinder, Canetti, Lebow and Rudd (1998) and Kahneman, Knetsch and Thaler (1986).
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Appendix A

We noted in the text that BSP may be more profitable than PB if (i) willingness to pay for the
bundle of all K products is heterogeneous across consumers, and (ii) consumers (or consumer
types) who have the highest willingness to pay for a bundle of size m are not necessarily the
same as those with the highest willingness to pay for a bundle of size n > m.

We can establish a more formal condition by using an approach similar to McAfee et al.
They note that MB nests CP as a special case, and derive a condition on the joint distribution
of tastes such that a local deviation from the CP prices yields an increase in profits. In our case,
we know that BSP nests PB as a special case, and we can ask when a local deviation from the
PB price will be profitable.

Since BSP allows consumers to pick their own bundles, any purchased bundle of m products
will consist of the m products for which the consumer’s valuations were highest. Let rim denote
consumer i’s mth-highest valuation (i.e., the mth order statistic). Then consumer i’s willingness
to pay for a bundle of size m is just yim =

∑m
k=1 rik; i.e., the sum of the first m order statistics.

Using this notation, we can write a sufficient condition for BSP to yield higher expected profits
than PB in terms of the joint distribution of yi,K−1 and riK :

Proposition: Suppose a firm sells K products for which marginal costs are identical and
equal to c, and let g denote the joint distribution of yi,K−1 (a consumer’s willingness to pay for
a bundle of any K − 1 products) and riK (the willingness to pay for the least preferred product).
If p∗ is the optimal PB price, then BSP is more profitable than PB if there exists a ∆ such that

(i) 0 < ∆ < c

(ii)
∫ ∆

0

∫ ∞

p∗−r
g(y, r)dydr > 0

To prove this, consider starting with BSP prices equal to the optimal PB price, p1 = p2 =
. . . = pK = p∗, and then reducing the price of bundles with K − 1 or fewer products to
p̃K−1 = p∗ −∆. The expected profits under these prices are

π̃(∆) = ( p∗ −Kc )
∫ ∞

∆

∫ ∞

p∗−r
g(y, r)dydr +

( p∗ −∆− (K − 1)c )
∫ ∆

0

∫ ∞

p∗−∆
g(y, r)dydr
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The difference from the PB profits is then

π̃(∆)− π̃(0) = (c−∆)
∫ ∆

0

∫ ∞

p∗−r
g(y, r)dydr + ( p∗ −∆− (K − 1)c )

∫ ∆

0

∫ p∗−r

p∗−∆
g(y, r)dydr

Conditions (i) and (ii) of the proposition simply guarantee that this difference is positive.

Note that when marginal cost is zero, condition (i) will not be met. However, this does
not mean BSP cannot be more profitable than PB when marginal cost is zero: the proposition
establishes a sufficient but not necessary condition for BSP profits to be higher than PB profits.
So even if this kind of local change is not profitable, there may still be other (nonlocal) changes
that are. However, the proposition does suggest that positive marginal costs make it more likely
that BSP beats PB.
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Appendix B

In this appendix we simply report the optimal prices and profits for the two-good model de-
scribed in section 3.2. Consumers’ valuations for the two goods are independent uniform random
variables on [0, 1] and [0, θ], respectively. (Assume θ ≥ 1.) Marginal cost is 0.

Scheme Optimal prices Optimal profits
CP

p∗1 =
θ

2
, p∗2 =

1
2

π∗ =
(1 + θ)

4

PB

p∗ =


√

2θ
3 if θ ≤ 3/2

1
4 + θ

2 if θ > 3/2

π∗ =


(

2
3θ

)3/2 if θ ≤ 3/2

1
8θ

(
θ + 1

2

)2 if θ > 3/2

BSP If θ ≤ 1.756739614:

p∗1 =
(1 + θ)

3

p∗2 =
1
3

(
2 + 2θ −

√
2θ2 − 2θ + 2

)

If θ ≤ 1.756739614:

π∗ =

(
2θ2 − 2θ + 2

)3/2 − 3θ3 + 9θ2 + 9θ − 3
27θ

Otherwise:

p∗1 = p∗2 =
1
4

+
θ

2

Otherwise:

π∗ =
1
8θ

(
θ +

1
2

)2

MB If θ ≤ 2:

p∗1 =
2θ

3
, p∗2 =

2
3

p∗12 =
2
3

+
2θ

3
−
√

2θ

3

If θ ≤ 2:

π∗ =
2
9

(
1 + θ +

1
3

√
2θ

)

If θ > 2:

p∗1 =
θ

2
+

1
3

, p∗2 =
2
3

p∗12 =
θ

2
+

1
3

If θ > 2:

π∗ =
27θ2 + 36θ − 4

108θ
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Appendix C

Available on request from the authors (or via our home pages on the web). It’s very long.
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Table 1. Alternative pricing strategies

Initials Name Num. prices Description

UP Uniform pricing 1 Each product sold separately at a uni-
form price

PB Pure bundling 1 Only option for consumers is the full
bundle

CP Component pricing K Each product sold separately at dif-
ferent prices

BSP Bundle-size pricing K Prices depend only on number of pur-
chased products

MB Mixed bundling 2K − 1 Separate prices for every possible
combination of products
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Table 2. Alternative taste distributions

Name Description

Exponential vik’s are independent exponential random variables with means between 0.2
and 2.0

Logit vik’s are independent extreme value random variables with means between
0 and 2.5, and scale parameter = 0.25

Lognormal vik’s are independent lognormal random variables; log(vik) has variance 0.25
and mean between -1.5 and 1

Lognormal(-) log(vi) is a multivariate normal random vector with means ranging between
-1.5 and 1, and negative pairwise correlations between products∗

Lognormal(+) log(vi) is a multivariate normal random vector with means ranging between
-1.5 and 1, and positive pairwise correlations between products

Normal vik’s are independent normal random variables with variances equal to 0.25,
and means between -1 and 2.5

Normal(-) vi is a multivariate normal random vector with means ranging between -1
and 2.5, and negative pairwise correlations between products∗

Normal(+) vi is a multivariate normal random vector with means ranging between -1
and 2.5, and positive pairwise correlations between products

Normal(+/-) vi is a multivariate normal random vector with means ranging between -1
and 2.5, and pairwise correlations are a mix of positive and negative values∗∗

Normal(v) vik’s are independent normal random variables with means equal to zero,
and variances between 0.25 and 1.75

Normal(v-) vi is a multivariate normal random vector with means equal to zero, variances
between 0.25 and 1.75, and negative pairwise correlations between products∗

Normal(v+) vi is a multivariate normal random vector with means equal to zero, variances
between 0.25 and 1.75, and positive pairwise correlations between products

Uniform vik’s are independent uniform random variables on [0, ak], with ak between
0.4 and 4

∗ For distributions with negatively correlated tastes, we set the pairwise correlation coefficients all equal to r/2,

where r is the smallest (i.e., most negative) value such that the covariance matrix remains positive definite. For

K=(2, 3, 4, 5) the correlation coefficients are (-0.5, -0.25, -0.1667, -0.125) respectively.
∗∗ For K > 2, we assume tastes for one pair of products have a correlation of -.25 and for another pair of products

0.25.
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Table 3. Percentiles of profits (as a fraction of BSP profits) with zero marginal costs

Pricing Scheme

Taste Distn. percentile UP CP PB MB

.01 0.632 0.724 0.995 1.000

Exponential .50 0.752 0.812 1.000 1.001

.99 0.878 0.977 1.000 1.041

.01 0.532 0.838 0.956 1.000

Logit .50 0.779 0.899 0.989 1.003

.99 0.956 0.984 1.000 1.019

.01 0.403 0.734 0.999 1.000

Lognormal .50 0.698 0.809 1.000 1.000

.99 0.861 0.945 1.000 1.002

.01 0.623 0.806 0.972 1.000

Normal .50 0.831 0.900 0.995 1.001

.99 0.985 1.023 1.000 1.043

.01 0.690 0.930 0.901 1.000

Normal(+) .50 0.900 0.962 0.978 1.000

.99 0.992 1.024 1.000 1.081

.01 0.454 0.544 0.937 1.000

Normal(-) .50 0.671 0.743 1.000 1.000

.99 0.991 1.025 1.000 1.090

.01 0.837 0.872 0.951 1.000

Normal(v) .50 0.895 0.936 0.973 1.022

.99 0.961 1.039 0.997 1.097

.01 0.419 0.800 0.982 1.000

Uniform .50 0.777 0.884 0.998 1.022

.99 0.919 1.003 1.000 1.072

The table reports percentiles of the ratio of profits to BSP profits, calculated across roughly 900 experiments

represented in each cell. For a detailed summary of the price strategies and the taste distributions see Tables 1

and 2, respectively.
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Table 4. Percentiles of profits (as a fraction of BSP profits) with equal positive marginal costs

Pricing Scheme

Taste Distn. percentile UP CP PB MB

.01 0.720 0.758 0.788 1.000

Exponential .50 0.812 0.859 0.975 1.004

.99 0.946 1.001 0.994 1.048

.01 0.552 0.840 0.434 1.000

Logit .50 0.801 0.906 0.958 1.003

.99 0.991 0.998 0.995 1.019

.01 0.563 0.728 0.841 1.000

Lognormal .50 0.743 0.828 0.995 1.000

.99 0.935 0.971 1.000 1.004

.01 0.632 0.809 0.344 1.000

Normal .50 0.851 0.907 0.929 1.001

.99 1.000 1.001 1.000 1.011

.01 0.700 0.932 0.417 1.000

Normal(+) .50 0.915 0.966 0.898 1.000

.99 0.999 1.000 0.999 1.009

.01 0.461 0.539 0.323 1.000

Normal(-) .50 0.700 0.768 0.969 1.000

.99 1.000 1.020 1.000 1.021

.01 0.864 0.892 0.676 1.000

Normal(v) .50 0.912 0.956 0.804 1.022

.99 0.970 1.056 0.902 1.101

.01 0.592 0.820 0.746 1.000

Uniform .50 0.823 0.924 0.969 1.031

.99 0.960 1.032 0.993 1.086

The table reports percentiles of the ratio of profits to BSP profits, calculated across the roughly 900 experiments

represented in each cell. For a detailed summary of the price strategies and the taste distributions see Tables 1

and 2, respectively. Marginal cost is set to 0.2 for all products.
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Table 5. Percentiles of profits (as a fraction of BSP profits) with unequal marginal costs

Pricing Scheme

Taste Distn. percentile UP CP PB MB

.01 0.657 0.824 0.812 1.000

Exponential .50 0.839 0.940 0.910 1.054

.99 0.939 1.058 0.988 1.172

.01 0.373 0.834 0.829 1.000

Logit .50 0.713 0.903 0.950 1.014

.99 0.949 0.992 0.989 1.070

.01 0.438 0.774 0.957 1.000

Lognormal .50 0.720 0.888 0.989 1.034

.99 0.911 0.993 0.997 1.081

.01 0.466 0.799 0.798 1.000

Normal .50 0.792 0.910 0.951 1.009

.99 0.981 1.097 1.000 1.143

.01 0.000 0.931 0.809 1.000

Normal(+) .50 0.841 0.967 0.932 1.003

.99 0.988 1.035 1.000 1.160

.01 0.303 0.523 0.838 1.000

Normal(-) .50 0.632 0.768 0.987 1.007

.99 1.000 1.122 1.000 1.146

.01 0.834 0.894 0.760 1.000

Normal(v) .50 0.908 0.967 0.823 1.032

.99 0.969 1.096 0.933 1.149

.01 0.437 0.864 0.795 1.000

Uniform .50 0.813 0.999 0.893 1.101

.99 0.947 1.091 0.992 1.230

The table reports percentiles of the ratio of profits to BSP profits, calculated across the roughly 900 experiments

represented in each cell. For a detailed summary of the price strategies and the taste distributions see Tables 1

and 2, respectively. Marginal cost equals 0.5 times consumers’ mean product valuation.
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Table 6. Percentiles of profits (as a fraction of BSP profits) with capacity constraints

Pricing Scheme

Taste Distn. percentile UP CP PB MB

.01 0.455 0.818 0.652 1.000

Exponential .50 0.859 0.947 0.857 1.069

.99 1.227 1.246 1.000 1.303

.01 0.436 0.858 0.743 1.000

Logit .50 0.770 0.922 0.986 1.004

.99 1.000 1.025 1.000 1.071

.01 0.351 0.746 0.868 1.000

Lognormal .50 0.700 0.831 1.000 1.000

.99 0.934 0.953 1.000 1.061

.01 0.583 0.821 0.666 1.000

Normal .50 0.833 0.915 0.987 1.000

.99 1.004 1.043 1.000 1.085

.01 0.597 0.907 0.687 1.000

Normal(+) .50 0.876 0.964 0.970 1.000

.99 1.005 1.038 1.000 1.056

.01 0.482 0.667 0.704 1.000

Normal(-) .50 0.774 0.852 0.990 1.010

.99 1.001 1.054 1.000 1.128

.01 0.847 0.919 0.499 1.000

Normal(v) .50 0.912 0.976 0.709 1.027

.99 1.125 1.125 0.949 1.138

.01 0.336 0.858 0.729 1.000

Uniform .50 0.844 0.977 0.914 1.064

.99 1.143 1.198 1.000 1.285

The table reports percentiles of the ratio of profits to BSP profits, calculated across the roughly 900 experiments

represented in each cell. Marginal costs are zero, but there is a binding capacity constraint which varies by

experiment. It is set by first computing the optimal uniform price under no capacity constraints, finding the

quantity demanded for the most popular product, and setting the constraint equal to 0.9 times that quantity.
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Table 7. Price differences and market shares, by bundle size

K=3

Average price differences Market shares

Bundle size |pCP − pMB|/pMB |pBSP − pMB|/pMB CP BSP MB

1 0.295 0.657 0.384 0.125 0.140

2 0.146 0.183 0.227 0.170 0.197

3 0.174 0.037 0.082 0.287 0.274

K=4

Average price differences Market shares

Bundle size |pCP − pMB|/pMB |pBSP − pMB|/pMB CP BSP MB

1 0.359 0.809 0.327 0.089 0.097

2 0.196 0.306 0.250 0.134 0.157

3 0.167 0.123 0.140 0.147 0.169

4 0.202 0.037 0.051 0.257 0.238

K=5

Average price differences Market shares

Bundle size |pCP − pMB|/pMB |pBSP − pMB|/pMB CP BSP MB

1 0.409 0.929 0.275 0.062 0.067

2 0.238 0.403 0.245 0.106 0.119

3 0.185 0.197 0.170 0.119 0.144

4 0.183 0.094 0.092 0.139 0.154

5 0.218 0.035 0.035 0.232 0.212

Price differences are calculated as a percent of the MB price, and then averaged across prices within bundle size

and across experiments. Market shares are averages across experiments for bundles of a given size. For example,

on average across experiments with K = 3, MB pricing leads 14.0% of consumers to purchase a single product.
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Table 8. Average welfare effects

CP BSP MB

K = 3 Total output 1.086 1.329 1.359

Consumer surplus 0.590 0.526 0.523

Producer surplus 0.929 1.072 1.089

Total surplus 1.520 1.597 1.611

Dead weight loss 0.367 0.290 0.276

K = 4 Total output 1.452 1.827 1.874

Consumer surplus 0.796 0.692 0.670

Producer surplus 1.261 1.489 1.516

Total surplus 2.057 2.180 2.186

Dead weight loss 0.493 0.370 0.364

K = 5 Total output 1.815 2.347 2.410

Consumer surplus 1.000 0.850 0.808

Producer surplus 1.590 1.913 1.951

Total surplus 2.589 2.763 2.760

Dead weight loss 0.619 0.445 0.448

Total output is calculated as the number of units sold of all K products combined. The cells report averages

taken across experiments.
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Table 9. Summary of ticket sales

Number of Average Ticket sales Ticket sales
Play Type Performances Attendance (subscription) (non-subscription)

A Little Night Music Musical 30 294.87 7018 1828

All My Sons Drama 33 233.85 6826 891

Bat Boy Musical 30 263.93 6782 1136

Memphis Musical 30 352.40 6999 3573

My Antonia Drama 26 312.38 7002 1120

Nickel and Dimed Drama 26 343.62 6800 2134

Proof Drama 25 319.88 6885 1112

The Fourth Wall Comedy 29 313.83 7385 1716

Total 229 302.21 55,697 13,510

Three plays (Bat Boy, All My Sons, and The Fourth Wall) were performed at the Lucie Stern Theater in Palo

Alto (capacity=428). The remaining 5 were performed at the Mountain View Center for the Performing Arts

(capacity=589).
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Table 10. Sales by purchase option

Purchase option Price per play ($) Number of consumers

Non-subscription:

1 play 40.80 8,131

2 plays 40.80 1,409

3 plays 40.80 555

4 plays 40.80 224

Subscription:

3-play bundle 36.20 205

5-play pick 37.00 2,794

8-play bundle 34.55 5,139

For non-subscription purchases, the numbers of consumers in each purchase option are computed by extrapolating

the purchase patterns of the consumers whose identities we could observe to the full sample of non-subscription

purchases. See text for an explanation. The 3-play subscription bundle was for the specific 3 plays performed at

the (smaller) Lucie Stern Theater in Palo Alto, which is why the per-play price is lower than the 5-play bundle.

Consumers purchasing the 5-play subscription could combine any 5 plays of their choice.
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Table 11. Correlation of tastes for pick-5 subscribers

(1) (2) (3) (4) (5) (6) (7) (8)

(1) A Little Night Music .000

(2) All My Sons -.026 .000

(3) Bat Boy .067 -.233 .000

(4) Memphis .072 -.081 .257 .000

(5) My Antonia .177 .067 -.086 -.037 .000

(6) Nickel and Dimed -.160 -.009 -.013 -.039 .001 .000

(7) Proof -.066 .210 -.030 -.057 -.094 .008 .000

(8) The Fourth Wall -.038 .034 .003 -.117 -.007 .196 .008 .000

This is the difference between the observed correlation matrix and the correlation matrix that would be expected

if plays were chosen independently (i.e., no correlation in tastes). It is constructed for the 8,005 purchasers of the

flexible 5-play subscription.
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Table 12b. Standard errors for estimated covariances (Σ) in Table 12a

(1) (2) (3) (4) (5) (6) (7) (8)

(2) 0.0397 0.0136

(3) 0.0191 0.0395 0.0193

(4) 0.0450 0.0448 0.1028 0.0540

(5) 0.0313 0.0285 0.0385 0.1009 0.0178

(6) 0.0237 0.0318 0.0406 0.0501 0.0514 0.0264

(7) 0.0321 0.0291 0.0349 0.0466 0.0335 0.0629 0.0203

(8) 0.0373 0.0337 0.0452 0.0526 0.0415 0.0410 0.0619 0.0338
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Table 13. Actual and predicted market shares of each play

(1) (2) (3) (4) (5) (6) (7) (8)

Shares among all consumers (%)

Actual 23.6 20.6 21.1 28.2 21.7 23.9 21.4 24.3
Predicted 19.5 20.7 22.5 29.3 21.4 23.9 21.6 25.4

Shares among all unbundled sales (%)

Actual 19.3 9.40 12.0 37.7 11.8 22.5 11.7 18.1
Predicted 5.32 2.78 6.29 37.6 8.83 11.1 10.0 18.1

Shares among pick-5 subscribers (%)

Actual 13.5 10.6 10.3 13.3 13.3 11.9 12.5 14.6
Predicted 9.25 11.8 13.9 12.8 11.4 15.8 11.3 13.7
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Table 14. Counterfactual pricing

UP PB TW CP BSP MB

p1 35.60 44.55 27.79 56.41 48.25

p2 30.07 46.92 43.08

p3 38.01 34.67 41.12 40.57

p4 44.08 37.72 38.68

p5 36.68 31.46 36.80 38.11

p6 38.89 35.04 36.54

p7 33.23 34.01 35.23

p8 30.81 33.30 37.90 32.89 34.29

Revenue 66.85 63.67 67.57 67.81 68.42 69.50

CS 55.03 54.37 54.02 55.88 54.75 52.62

For UP, p1 is the optimal uniform price for a single play. For PB, p8 is the optimal per-play price for the bundle

of all 8 plays. TW is the pricing scheme currently employed by the theater company: p1 is the single-play price,

p3 is the per-play price for a specific bundle of 3 plays, p5 is the per-play price for any combination of 5 plays, and

p8 is the per-play price if you buy all 8. For CP, p1-p8 are the prices for the 8 individual plays, and for BSP, p1-p8

are the per-play prices for any bundle containing the corresponding number of plays. For MB, p1-p8 are mean

per-play prices for bundles of a given size (e.g. p1 is the mean single-play price, p2 is the mean price for all 2-play

bundles, and so forth). The revenue and consumer surplus numbers are normalized by the market size—i.e., we

report revenue per consumer.
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Figure 1: Separation of consumers under CP and BSP
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Figure 2: Distributions of profits for each pricing strategy, relative to BSP,
under different assumptions on marginal costs
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Capacity constraints

Each box-plot depicts the 1st, 25th, 50th, 75th and 99th percentile of the distribution of profit relative to the

profit from MB.
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