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Abstract

Great achievements in knowledge are produced by older innovators today than they were a
century ago. Using data on Nobel Prize winners and great inventors, I �nd that the mean age at
which noted innovations are produced has increased by 6 years over the 20th Century. I estimate
shifts in life-cycle productivity and show that innovators have become especially unproductive
at younger ages. Meanwhile, the later start to the career is not compensated for by increasing
productivity beyond early middle age. I further show that the early life-cycle dynamics are
closely related to variation in the age at Ph.D. and discuss a theory where accumulations of
knowledge across generations lead innovators to seek more education over time. More generally,
the results show that individual innnovators are productive over a narrowing span of their life
cycle, a trend that reduces, other things equal, the aggregate output of innovators. This drop
in productivity is particularly acute if innovators�raw ability is greatest when young.
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Age is, of course, a fever chill

that every physicist must fear.

He�s better dead than living still

when once he�s past his thirtieth year.

�Paul Dirac, 1933 Nobel Laureate in Physics

1 Introduction

It is widely perceived that great innovations are the provenance of the young. The sentiments of

Dirac expressed above have been shared by Einstein, von Neumann and many other eminent scien-

tists and mathematicians (Zuckerman & Merton, 1973; Simonton, 1988). Empirical investigations

of this view tend to support the idea that innovative activity is greater at younger ages, although

great achievement before the age of 30 is not typical. Rather, a researcher�s output tends to rise

steeply in the 20�s and 30�s, peak in the late 30�s or early 40�s, and then trail o¤ slowly through

later years (Lehman, 1953; Simonton, 1991).

While many great insights do occur at younger ages, it is also clear that innovators spend a

large number of their early years undertaking education.1 Indeed, human capital investments

dominate the early part of the innovator�s life-cycle. Learning a subset of the skills, theories, and

facts developed by prior generations seems a necessary ingredient to innovative activity. Newton

acknowledged as much in his famous letter to Hooke, "If I have seen further it is by standing on ye

sholders of Giants". Dirac and Einstein, who produced major contributions at the age of 26, �rst

went through signi�cant educational periods and then built directly on existing work. Dirac built

on Heisenberg�s uncertainty principle and Hamiltonian mechanics, while Einstein�s early insights

built on the work of Planck and Maxwell. Certainly, innovation would be a very di¢ cult enterprise

if every generation had to reinvent the wheel.

1Research in the psychology literature suggests that substantial training periods �ten years at minimum �are a
prerequisite to expertise in many �elds, from science to sports, music, medicine, and chess (see Ericsson and Lehmann
1996 for a review).
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These two observations suggest an intriguing tradeo¤. If innovators are especially productive

when young, but education is an important preliminary input to innovation, then the opportunity

cost of the time spent in education may be signi�cant. Moreover, how innovators approach this

tradeo¤ may change as the economy evolves. For example, accumulations of knowledge across

generations may create increasing educational demands, so that expanding time costs of education

delay the onset of active innovative careers. This possibility poses a problem for innovation as it

reduces, ceteris paribus, the lifetime output of individual innovators, especially if their potential is

greatest when young.

In this paper, I show that the great achievements in knowledge of the 20th Century occurred

at later and later ages. The mean age at great achievement for both Nobel Prize winners and

great technological inventors rose by about 6 years over the course of the 20th Century. This

aging phenomenon appears to be substantially driven by declining innovative output in the early

life-cycle. Moreover, the early life-cycle e¤ects appear to be substantially explained by increases

in training.

Section 2 presents the main fact: there has been a substantial increase in the age at great

invention. This trend appears distinctive, as the age of great achievement in athletics has not

changed. I introduce several hypotheses for the trend. In one type of hypothesis, the life-cycle

productivity of innovators may have shifted. For example, increasing educational attainment may

delay the onset of active innovative careers. Alternatively, innovator productivity may increase at

more advanced ages due to improved health, e¤ort or an increased role for experience. In another

type of hypothesis, the upward age trend in the data could simply re�ect underlying demographic

shifts. Since the population has become substantially older with time, we are more likely to draw

older innovators today than we were at the beginning of the 20th century. Put another way, if

people lived shorter lives in the past, then innovators in the past will also appear younger.
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Section 3 tests between these competing explanations and locates any speci�c shifts in life-cycle

productivity. I �nd substantial shifts in life-cycle productivity beyond any demographic e¤ect.

Speci�cally, there has been a large upward trend in the age at which innovators begin their active

careers. The estimates suggest that, on average, the great minds of the 20th Century typically

became research active at age 23 at the start of the 20th Century, but only at age 31 at the end -

an upward trend of 8 years. Meanwhile, there has been no compensating shift in the productivity

of innovators beyond middle age.

Section 4 presents additional analysis to further understand the delayed start to the career. I

�rst examine data on age at Ph.D. and show that Ph.D. age increases substantially over the 20th

Century. I next harness World Wars I and II as natural experiments, testing the idea that training

is a prerequisite for innovation and showing that interruptions to training must be "made up" after

the war. Next, I investigate cross-�eld, cross-time variation and show that variations in Ph.D. age

typically predict variations in the age-invention relationship. Collectively, these analyses suggest

that training plays a key role in explaining the age-invention patterns.

Section 5 clari�es interpretations of the empirical patterns and considers their implications.

I present a simple theory to examine the relationship between human capital investments and

life-cycle productivity and show how accumulations of knowledge within �elds can provide a con-

sistent explanation for the set of facts. Further evidence from "ordinary" inventions underscores

this perspective and also shows that the aging phenomenon extends broadly across the innovator

population. Section 5 closes by clarifying speci�c implications of the empirical patterns for core

issues in economic growth and the history of science. Section 6 concludes.
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2 Age and Great Achievement

This section presents benchmark facts about the age of individuals at the time of their great

achievements. Two types of achievements are considered. The �rst group considers knowledge-

based achievements: research that leads to Nobel Prizes in Physics, Chemistry, Medicine, and

Economics, as well as technological achievements presented in almanacs of the history of technology.

The second group considers athletic achievements based on world-record breaking events in track

and �eld, as well as Most-Valuable Player awards in baseball. The athletes are included for

comparison, allowing us to highlight what is distinctive about knowledge-based achievement.

The data set uses established sources to identify great achievements in knowledge. Nobel Prizes

are determined by committees of experts and are given in principle for a distinct advance. The

technological almanacs compile key advances in technology, by year, in several di¤erent categories

such as electronics, energy, food & agriculture, materials, and tools & devices. The year (and

therefore age) of great achievement is the year in which the key research was performed. For the

technological almanacs, this is simply the year in which the achievement is listed. For Nobel Prizes,

which are retrospective, the year of achievement was determined by consulting various biographical

resources. The Data Appendix describes the data collection and sources in further detail.

As a �rst look at the data, Figure 1 presents ages at great innovation, considering all 20th

Century observations together. Three features are of immediate note. First, there is a large

variance in age. The largest mass of great innovations in knowledge came in the 30�s (42%), but

a substantial amount also came in the 40�s (30%), and some 14% came beyond the age of 50.

Second, there are no observations of great achievers before the age of 19. Dirac and Einstein prove

quite unusual, as only 7% of the sample produced a great achievement at or before the age of 26.

Third, the age distribution for the Nobel Prize winners and the great inventors, which come from

independent sources, are extremely similar over the entire distributions. Only 7% of individuals
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in the data appear in both the Nobel Prize and great inventors data sets.

The most surprising aspect of these data, however, becomes apparent when we consider shifts

in this age distribution over time. To start, I run the following regression:

ai = �+ �ti + 
Xf + "i (1)

where ai is the age of individual i at the time of the great achievement, ti is the year of the

great achievement, and Xf are �xed e¤ects for the �eld of the achievement and the country of the

individual�s birth. Results of this regression are presented in Table 1. We see that the mean age

at great achievement is trending upwards by 5 or 6 years per century. These trends are highly

signi�cant and are robust to �eld and country of birth controls. Indeed, the controls cause the time

trend to strengthen, rising to about 8 years over the course of the 20th century. The strengthening

e¤ect of the controls on the trend suggests a compositional shift in great innovation towards �elds

and countries that favor the young.

These trends can be seen in greater distributional detail in Figure 2, which presents the raw data

again but divides the 20th Century into three chronological periods: from 1900-1935, 1935-1960,

and 1960 to the present. This �gure combines all unique individuals in the Nobel Prize and great

inventors data sets. Here we observe a general shift of the age distribution away from younger

ages. There is a distinct drop in the presence of those in their 20�s and an increased presence of

those in later middle age.

One obvious hypothesis for this outward age shift is a shift in the life-cycle productivity of great

minds. Given that the early part of an innovator�s career is dominated by education, one natural

reason for a decline in early innovative potential may be an increase in the time spent in training.

More generally, there may be relative increases in the productivity of older innovators directly; for

example, due to improved health or an increased role for experience.

But we must be careful in how we interpret the distributional shifts we see. An alternative
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hypothesis for the outward age shift is a simple demographic e¤ect. If the underlying population

of innovators is getting older, then older innovators will be more likely to produce substantial

innovations, even if the relationship between age and innovative potential is �xed. The greater the

ratio of 50-year-old innovators to 25-year-old innovators, the more likely the Nobel Prize winning

invention or greatest technological insight to come from one of the 50-year-olds. Such demographic

e¤ects may be important: certainly, life-expectancy and the average age of the population have

risen substantially over the 20th century.

One reduced-form way to test between these ideas is a di¤erence-in-di¤erence style analysis. If

we view the scienti�c/technological innovators as a �treatment�group experiencing e¤ects peculiar

to knowledge-based careers, then we might pro�tably attempt a comparison with �control�groups

that are claimed on a priori grounds to be immune to such knowledge e¤ects. An obvious choice

for a control group is great achievements in athletics. Age-achievement pro�les in athletics will

also be in�uenced to some extent by demographic e¤ects, but athletes presumably do not face

increasing training demands over time � the rules of their games are both straightforward and

�xed. Figure 3 compares the underlying distribution of MVP winners in baseball before and after

1960, dividing the data in half. We see that the entire distribution appears essentially stationary.

Such stationarity is also seen (in a similar, unreported �gure) in the ages at which individuals break

world records in various track and �eld events.

The substantial upward trend in the age of knowledge-based achievement is absent in physical

achievement. However, comparing these achievements cannot be wholly satisfactory, partly because

the age distribution of athletes favors the young to a degree that knowledge-based achievement

does not. Shifts in the population density beyond middle age will therefore not in�uence the age

distribution of athletic achievement, while they still might in�uence the age distribution of great

achievements in knowledge. More generally, this comparison does not help us pinpoint any distinct

6



shifts in life-cycle productivity for knowledge-based careers.

The following section develops a formal econometric model to identify speci�c shifts in inno-

vation potential, controlling for demographic e¤ects. With this econometric model, we begin to

open the black-box of the age-invention relationship by asking two questions explicitly. First, is

the upward trend in the age of great achievement simply a demographic e¤ect, or is it driven by

shifts in innovator�s life-cycle productivity? Second, if life-cycle productivity is shifting over time,

is this due to e¤ects at the beginning of the life-cycle, the end of the life-cycle, or both?

3 Life-Cycle Productivity

This section presents an econometric model to de�ne the probability that witnessed innovations

are produced by innovators at particular ages. Empirical analysis follows, using this model to

determine sources of the upward trend in the age of great achievement.

Given a great innovation, the probability that this innovation was produced by an individual

of age a will depend on two things. First, it will depend on the relative innovation potential of

innovators in di¤erent cohorts. For example, according to Dirac, a physicist below the age of 30

has more innovative potential on average than one who is older. Second, it will depend on the

density of innovators of various ages. If a population is full of 50-year-old researchers but has very

few 20-year-old researchers, then the likelihood a particular innovation came from a 20-year-old is

low, even if young innovators have good ideas.

De�ne the age distribution of the population at time t as pa(t). Next de�ne
_
xa(t) as the average

innovation potential of a given cohort at time t. The probability a given innovation comes from

an innovator of age a is then

Pr(ajt) = pa(t)
_
xa(t)P

fa2Ag pa(t)
_
xa(t)

(2)

This expression is derived formally in the appendix by aggregating innovative potential over indi-
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viduals in the population, but it should be intuitive. The probability a given innovation comes from

a person of age a is just the relative innovation potential across cohorts weighted by the population

age density, or, equivalently, the population age density weighted by the innovation potential.

Several useful points can now be made. First, shifts in the age distribution of great innovation,

as seen in Figure 2, must be driven either by shifts in the population age distribution, pa(t), or by

shifts in the average innovation potential of various age groups,
_
xa(t). Second, the stochastic process

represented in equation (2) can produce innovators with a large variance in age, as demonstrated in

Figure 1. Third, any presumption that the innovators�upward age trends are driven mechanically

by increasing life expectancy may be misleading if the innovation potential,
_
xa, of those in their

later years is low �if only because people retire. Finally, it is worth noting that this stochastic

model makes few assumptions. While we will make further assumptions in how we de�ne pa(t) and

_
xa(t), the model to this point is quite general.

Equation (2) is the central vehicle for the maximum likelihood estimation to follow. In particu-

lar, given data for the population distribution, pa(t), and a series of year-age observations for great

achievements, we can use (2) to test hypotheses about the shape of innovation potential,
_
xa(t).

Before continuing to the estimation, it remains to develop an explicit model of
_
xa(t) and how it

may shift over time. This sub-model is presented in the next section.

3.1 A Model of Life-Cycle Productivity

In this section we add parametric structure to the de�nition of life-cycle innovation potential,
_
xa.

In choosing an appropriate modeling strategy, it is helpful to �rst consider the existing empirical

literature on creative careers, which suggests the following general pattern (e.g., Lehman 1953,

Bloom 1985, Simonton 1991, Stephan and Levin 1993). First, the life-cycle begins with a period

of full-time training in which there is no substantive creative output. Second, there is a rapid rise

in output, following an S-curve, to a peak in the late 30�s or early 40�s. Third, innovative output
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declines slowly through later years, following a declining S-curve. While laboratory experiments

do suggest that creative thinking becomes more di¢ cult with age (e.g. Reese et al, 2001), the

decline in innovative output at later ages may largely be due to declining e¤ort, which a range

of sociological, psychological, institutional, and economic theories have been variously proposed to

explain (see Simonton 1996 for a review).

Given this pattern, consider the following simple model. Supressing time subscripts for the

moment, we write

_
xa = L1(a)L2(a) (3)

where L1(a) captures early life-cycle e¤ects and L2(a) captures late life-cycle e¤ects. (The appendix

provides a derivation of this model as the aggregation of individual innovation potential.) We

imagine that L1(a) is close to zero in the earliest part of the life-cycle and then rises once innovators

complete their training and become active researchers. To estimate L1(a), we assume a logistic

speci�cation

L1(a) =
1

1 + e�(a��)=!
(4)

where � is the average age at which the career begins and ! is a variance parameter. A logistic

speci�cation seems reasonable as it is parametrically simple, �exible, and captures the "S" shape

one sees in early life-cycle output.2 Figure 4 presents a graph to clarify this logistic speci�cation

and the meaning of the parameters.

To estimate L2(a), we assume a second logistic curve with parameters � and �,

L2(a) = 1�
1

1 + e�(a��)=�
(5)

This reverse "S" curve appears reasonable, as it can capture the initially slow decline in output in

later middle age, followed by the more rapid decline and then tailing o¤ of output into old age, as

documented in the literature noted above.
2Another natural option is a normal distribution, a variation that has no substantive e¤ect on the results.
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With equation (3) and its sub-components (4) and (5), we now have a model for innovation

potential over the life-cycle. We can estimate this model to determine how the propensity to

produce great achievements in knowledge changes with age. Moreover, by articulating speci�c

underlying models for both the "front end" of the life-cycle, (4), and the "back end" of the life-

cycle, (5), we can ask not only whether innovation potential has been shifting over time but, more

speci�cally, whether any shifts are coming from the early years of life, the late years of life, or both.

A motivational question in this paper is whether �, the mean age at which the active career

begins, is changing over time. Shifts in this mean over time can be generally modeled by a

polynomial expansion,

�(t) = �0 + �1t+ �2t
2 + ::: (6)

Shifts in the variance parameter can be modeled similarly. The main estimation below will allow

for a linear trend in �(t) and a �xed variance parameter, !; more general speci�cations will also

be considered as robustness checks.

As with the beginning of the innovative career, we can further allow for shifts in innovation

potential at the end of the career,

�(t) = �0 + �1t+ �2t
2 + ::: (7)

For example, as noted above, shifts that increasingly favor experience over raw ability may increase

later life innovation potential. Meanwhile, improved health technology may lead to clearer think-

ing and/or increased physical stamina, while, alternatively, rising incomes could encourage earlier

retirement and a decline in average innovation potential among older innovators. In the estimation

I will constrain L2(30) > 0:9 to ensure that (5) and movements in it are describing e¤ects later

in life, which will make the results more transparent to interpret. This strategy will help us to

substantially limit theories for the increased age at great innovation over the 20th Century.
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Taken together, equation (2) and the sub-model of innovation potential given by equations

(3)-(7) produce a stochastic model that integrates demographic e¤ects with a model of knowledge

accumulation.3. The following subsection discusses the data used to estimate pa(t). We then

present the central results.

3.2 Population Data

The great innovators come from many di¤erent countries and are therefore drawn from populations

with di¤ering age distributions. Data on these age distributions are di¢ cult to �nd for many

countries, particularly over the time-frame of the entire 20th century. For this reason, the estimation

will focus on the American subset of great innovators. The American innovators show a similar

trend in mean age at great achievement as the larger group and provide a signi�cant number of

observations on their own.4

The population age densities are calculated from large micro-samples of the U.S. census. With

these micro-samples, it is possible to determine not only the age distribution for (i) the entire

national population, but also the distribution for subgroups of (ii) active workers and (iii) profes-

sional scientists and engineers. The scientist and engineer data are appealing as they may capture

a closer approximation of the relevant age distribution of innovators. However, the sample sizes

are small in early census years, and the occupational codes in the census are not entirely consistent

across time, raising concerns that shifts in the age distribution for this sub-group may partly be

an artifact of shifting classi�cations. The maximum likelihood model will be estimated using each

of these population data sets. As we will see, the estimates are quite insensitive to the choice of

population. See the Data Appendix for further discussion of these census data and the construction

3The log-likelihood function is:
P

i log

 
pai (ti)

1

1+e�(ai��(t))=!(t)

�
1� 1

1+e�(ai��(t))=�(t)

�
P
fai2Ag

pai (ti)
1

1+e�(ai��(t))=!(t)

�
1� 1

1+e�(ai��(t))=�(t)

�
!

4There are 294 American-born great innovators. The trend in age at great achievement is 8.24 years/century
with a standard error of 2.58 years/century.
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of the science and engineers sub-sample.

3.3 Results

Table 3 presents the maximum likelihood estimates for shifts in innovation potential. Columns (1)

through (3) allow for linear trends in the mean parameters, which we take as the main speci�cation.

There are two striking results. First, there has been a large shift in life-cycle innovation

potential, even when controlling for an aging population. Second, the shift in innovation potential

is felt entirely at the beginning of the life cycle. In particular, we see that the mean age at which

innovators begin making active contributions has increased by about 8 years over the course of

the 20th Century, rising from a mean age of about 23 in 1900 to approximately 31 in the year

2000. These results are robust to the choice of population data. Meanwhile, there is little shift in

innovation potential in middle age or beyond. Depending on the speci�cation, estimates show at

most modest and in all cases highly insigni�cant movements. Interestingly, this stationarity implies

that demographic e¤ects have driven the rising density of innovators beyond middle age that was

seen in Figure 2.

Figure 5 compares the estimated life-cycle curves for the year 1900 and the year 2000, using

speci�cation (3). We see that the peak ability to produce great achievements in knowledge came

around age 30 in 1900 but shifted to nearly age 40 by the end of the century. An interesting aspect

of this graph is the suggestion that, other things equal, lifetime innovation potential has declined.

This point will be further discussed in Section 5.

One may also now decompose the trends of Section 2 into demographic and productivity com-

ponents. Holding population distribution �xed using 1950 data, the productivity shift in Table 3

implies an approximately 5 year increase in the mean age of great achievement. Meanwhile, hold-

ing innovation potential �xed at its 1950 estimate, the aging population suggests an approximately

3 year increase in mean age. Hence productivity shifts account for about 60% of the 8-year age
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trend seen in Section 2, while the aging population captures 40%.5

These basic results are robust to a number of alternative speci�cations. The speci�cations in

Table 3 allow for additional linear trends in the variance parameters of the logistic distributions.

We see that the only statistically signi�cant movement in innovation potential continues to come at

the beginning of the life cycle, in the mean age at which the career begins. Other functional forms

have also been examined, including those that do not assume logistic distributions. Regardless of

the functional form, I �nd that the signi�cant trends appear only in the beginning of the life-cycle,

showing an increasing age at which innovators begin innovating.6

Columns (4) and (5) of Table 2 further consider the U.S. Nobel Prize and U.S. great inventor

datasets separately, showing similar results in each case. While the Nobel Prize is in principle given

for distinct achievements, we might be concerned that other criteria a¤ect the selection, and that

these criteria have shifted over time to favor older innovators.7 Possible selection concerns regarding

Nobel Prizes are unlikely to be important here, however, mainly because the great inventor data set,

which simply lists the great technological achievements in each given year, appears more immune

to these kinds of selection biases and yet, on every dimension, has produced similar results.8

5Moreover, much of the demographic e¤ect comes in the �rst 2/3rds of the century; more recently, the baby-boom
signi�cantly attenuated the aging of the working population and even reversed it in the 1970s and 1980s.

6The logistic functions are appealing for the reasons discussed in Section 3.1. The estimation methodology
can, however, also employ polynomial or piecewise linear functions to describe sequential pieces of the life cycle.
Estimations become noisier as the number of estimated parameters increases, but they produce similar basic results:
an increase, prior to middle age, in the age at which innovators begin producing great ideas.

7For example, an increasing bias towards lifetime achievement could have this e¤ect.
8The Nobel Prize and great inventors data sets have extremely similar age distributions (Figure 1) and extremely

similar mean trends (Table 1). Table 2 shows that the structural trends are similar for both groups when they are
estimated independently; the coe¢ cients for the great inventors are the same as for the whole, and the standard
errors rise slightly as would be expected given the smaller sample size. These common patterns suggest common
forces rather than idiosyncratic selection e¤ects. Finally, the results of Tables 2 and 3 show shifts in innovation
potential at the beginning of the life-cycle and not at the end, which is not consistent with selection stories based on
longevity or increasing favoritism for lifetime achievement.
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4 Inside the Early Life-Cycle

Age at great invention has trended upwards by approximately 6 years over the course of the 20th

Century. This trend is not simply due to an aging population but re�ects a substantial change

in the life-cycle productivity of innovators. Furthermore, the maximum likelihood estimates focus

interpretations on e¤ects limited to the young. Explanations must confront not a general aging

e¤ect but a speci�c, substantial delay at the beginning of the life-cycle.9

A natural and intriguing hypothesis for the rising delay in the early life-cycle is the possibility

that training time has increased. A viewpoint that emphasizes training would build on two claims.

First, that training is an important preliminary input to the innovative career. Second, that

variations in training duration can help explain the age-invention relationship.

This section focuses on the early life-cycle and the role of training to further open up the black

box of age and invention. I undertake three analyses. The �rst analysis looks directly at evidence

from Ph.D. age and shows that Ph.D. age increases substantially over the 20th Century. The

second analysis harnesses world wars, as exogenous interruptions to the young career, to test the

basic idea that training is an important preliminary input to innovation. I show that, while the

world wars do not explain the 20th century�s age trend, they do indicate the unavoidable nature of

training: lost years of training appear to be "made up" after the war. The �nal analysis explores

cross-�eld, cross-time variation. I show that variations in training duration predict variations

in age at great invention, and I close by discussing a perspective in which shifts in foundational

knowledge explain major training and achievement age patterns within �elds and over time.

9Theories that focus on productivity in the later life-cycle, such as improved health e¤ects, �nd little support.
Theories that suggest delays in innovation at both young and old ages will also have trouble explaining the speci�c
empirical patterns we see. For example, research on creative careers in the arts (Galenson & Weinberg 2001; Galenson
2004a; Galenson 2004b) has suggested a useful distinction between "conceptual" innovation and "experimental"
innovation, where the former favors the young and the latter favors the old � often the very old. However, these
important ideas are not wholly satisfactory here because an increasing experimental bias would presumably be felt
to a large degree at older ages.
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4.1 The Age at Highest Degree

Given the increasing delay at the beginning of the life-cycle, an obvious question is whether this

delay is re�ected in longer periods of formal education.10 While the Ph.D. is an institution that only

approximately captures the end of the training phase and the beginning of the primary research

phase, it is also the most obvious delimiter between these phases. I consider here the basic trend.

For 93% of the Nobel Prize winners, it was possible to determine the age and location for the

highest degree. In 96% of these cases, the highest degree was a doctorate. I analyze trends in the

age by running the following regression:

aDi = �+ �tDi + 
Xf + "i (8)

where aDi is the age of individual i at the time of their highest degree, tDi is the year of the

highest degree, and Xf are �xed e¤ects for the country of the degree and the �eld of the ultimate

achievement.

The results are presented in Table 4. We see that Nobel Prize winners complete their formal

education at substantially older ages today than they did a century ago. There is an upward age

trend of approximately 4 years per century, and the trend is robust across speci�cations. This

result suggests that training duration may be intimately related to the drop in innovative output

in the early life-cycle.11 As we will see below, patterns in the age of highest degree also inform

10 Indeed, several studies have documented upward trends in educational attainment among the general population
of scientists. For example, the age at which individuals complete their doctorates rose generally across all major �elds
in a study of the 1967-1986 period, with the increase explained by longer periods in the doctoral program (National
Research Council, 1990). The duration of doctorates as well as the frequency and duration of post-doctorates has
been rising across the life-sciences since the 1960s (Tilghman et al, 1998). A study of electrical engineering over the
course of the 20th century details a long-standing upward trend in educational attainment, from an intitial propensity
for bachelor degrees as the educational capstone to a world where Ph.D.�s are common (Terman, 1998).
11 Interestingly, while the increase in training age is large, it accounts for only half the shift seen in the maximum

likelihood estimates, although it is within those estimates� con�dence intervals. Institutional variations in Ph.D.
requirements may complicate further interpretations. For example, the country �xed e¤ects in (8) are jointly
signi�cant with a p-value of less than :0001. This suggests that variations in degree requirements di¤er across
countries; institutional variations over time are then likely as well. The well-known rise of post-doctorates (e.g.
Tilghman et al, 1998) and/or increased �on-the-job training� could suggest further extension of the training phase
in ways not captured by charting ages at Ph.D..
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substantially more detailed variation in the data.

4.2 War Interruptions

World Wars I and II created interruptions in many careers. For certain cohorts, the interruption

of the war was felt largely in the training phase. This provides a natural experiment to investigate

the role of training in the early life-cycle. I consider two types of analysis, one that relies on

educational data and one that does not.

First, consider that in every year there are people who have completed their undergraduate

degree but not their graduate degree. Every person is at some point between degrees, so by

drawing any year at random we draw a sample of people with similar innate characteristics, on

average. We can then ask whether those individuals who happened to be between degrees at

the outset of world war, in 1914 and 1939, as opposed to being between degrees in other years,

experienced unusual delays in completing their training and in their ensuing innovative careers.

For 68% of the Nobel Prize winners, it was possible to collect the year of the undergraduate degree

and hence identify individuals who are between degrees. I run regressions of the form

yi = �+ 
1WW1 + 
2WW2 + �ti + 
Xf + "i (9)

where yi is the outcome variable of interest: either the age at highest degree, the number of years

between the undergraduate and graduate degree, or the age at great achievement. The variables

WW1 and WW2 are dummies equal to 1 if the individual happened to be between degrees at the

outset of the indicated war. The control ti captures background trends in the dependent variables,

and Xf includes �eld and country �xed e¤ects and dummies for cases where educational data is

not observed.

The results of these regressions are presented in the left panel of Table 5. We see that both

world wars resulted in a 2 year increase in the age at Ph.D. for those individuals who happened to
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be caught between degrees. Related, there is 2 to 3 year increase in the number of years between

the undergraduate and graduate degree. These both suggest that interruptions to training must

be "made up". Table 5 shows that these early life cycle delays can be further associated with

increased age at great achievement, by 2-3 years for World War II although there is little e¤ect

for World War I. Given that innovation potential remains high through middle age, it is not clear

that a small number of observations with early life-cycle interruptions will show an increase in the

mean age of great innovation.12 One expects, more precisely, a decline in innovative potential at

younger ages, which is shown next.

Figure 6 presents the percentage of great achievements produced by those aged 25 to 30 in

each �ve year period over the 20th century. This �gure uses the full sample of great minds, not

just those for whom educational data is available. For comparison, the percentage of the U.S.

workforce between these ages is also shown. Interestingly, we see a particularly sharp decline

in the proportion of innovators aged 25-30 in the �ve years after the world wars (1920-1925 and

1945-1950). These cohorts were aged 20-25 during the wars - during the typical training phase

- yet these cohorts appear extremely unproductive after the war, relative to other innovators in

the immediate postwar and relative to the typical productivity of this age group in immediately

previous and subsequent intervals.

To further investigate this pattern, I run the following Probit model for the great achievement

data

Pr[25 <= ai < 30] = �+  0treatmenti +  1controli + �ti + 
Xf (10)

where treatment is a dummy equal to 1 for those aged at least 20 at some point during the war

and never more than 25, while control additionally captures those aged 15-19.13 Other controls

12The weak World War I result in particular may re�ect low power; since there are only 10 individuals in the data
with UGONLY_WW1 = 1 (there are 66 observations in the World War II case).
13Control cohorts are born 1893-1903 (World War 1 case) and 1920-1930 (World War 2 case). Treatment cohorts

are born 1893-1898 (World War 1) and 1920-1925 (World War 2). World War I was primarily fought 1914-1918 and
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are as above. The results show that individuals who experience war between the ages of 20 and 25

had an unusually low probability of innovating in the 25-30 age range �even though the wars were

over. This pattern holds independently for both world wars. A natural explanation is again that

interruptions in the training phase had to be �made up�. This analysis is based on the output

measure - great achievement - rather than education data, yet the conclusions are substantially

the same. Great minds do not magically arrive at high innovation potential at a certain age, but

rather their behavior in their early life-cycle informs their ensuing innovative output. In particular,

interruptions during the training phase create delays to their education and their achievements,

suggesting that training is an important preliminary input to the innovative career.14

4.3 Knowledge Accumulation and Revolution

We can go further in understanding any training-achievement nexus by harnessing additional di-

mensions of variation. Figure 7 plots the evolution of age at great invention separately for the four

Nobel sub-�elds (dark lines, left axis). These are non-parametric regressions so that the patterns

are seen without imposing a functional form. The age at Ph.D. is separately plotted (grey lines,

right axis), as are 95% con�dence intervals.15

We see that Ph.D. and achievement age tend to follow remarkably similar dynamics within �elds.

The shared dynamics between Ph.D. age and achievement age are most apparent in the hard sciences

�Physics, Chemistry, and Medicine �and less so in Economics, although this case is obscured by

outliers.16 Most strikingly, both achievement and Ph.D. age in Physics experienced a unique decline

World War II late 1939-1945.
14Note also that isolating the in�uence of world wars on these groups does not change the overall 20th century

trends. While the wars lead to interruptions in training and substantially reduce early life-cycle innovation potential,
we see in Table 5 that the background trends in age at great achievement and age at Ph.D. are essentially unchanged.
Figure 6 further underscores this point and, more broadly, the maximum likelihood estimates of Section 3. The
�gure shows a continuing drop in innovative output among the young over the whole 20th century, a drop far greater
than shifts in population density alone, or the abberations of wars, would suggest.
15These plots are the results of Fan regressions with a quartic kernel, 25% bandwidth, and bootstrapped standard

errors (Fan 1992; Deaton 1997).
16The movement in mean Ph.D. age for Economics is less predictive, although the con�dence intervals are wide.

There are only 53 observations for economics, which limits the inference, and the sharp rise to 1960 is driven largely
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in the early 20th century. This unusual feature, beyond reinforcing the relationship between

training and achievement age, may also serve to inform more basic theories for the underlying

dynamics and di¤erences across �elds.

An intriguing side-e¤ect of innovation is the possibility that new ideas impose an increasing

educational burden on future innovators. If the set of foundational ideas expands, training time

may expand, making innovators less productive in their early life-cycle. On the other hand,

progress in science need not require expansions in foundational ideas. New ideas sometimes serve

not as extensions or re�nements but rather as revolutions, leading to contractions in the knowledge

space that may cause training requirements to decline. Whether scienti�c progress is fundamentally

cumulative or revolutionary in nature is an empirical question - and one much debated by historians

of science. Thomas Kuhn distinguished between periods of "normal" science (accumulation) and

periods of "paradigm" shifts (revolution), with early 20th Century physics as his quintessential

example of the latter (Kuhn, 1962).

The following analysis considers the age-invention relationship from this perspective. I draw

on Jones and Weinberg (2006), who consider the detailed history of physics and other Nobel dis-

ciplines through the lens of accumulation and revolution. That analysis suggests that, while all

Nobel �elds present ideas both cumulative and revolutionary, the progress of "normal" science is

the common phenomenon, with steady extensions and re�nements to prior work. For example,

chemistry has seen cumulative progress in many core areas, such as the description of elements,

analysis of molecular structure, and chemical synthesis.17 The Nobel for medicine and physiol-

by a few signi�cant outliers (Allais, Coase, and Stone, who receive their Ph.D.s at ages 38, 41, and 44 respectively,
long after their �rst academic appointments and years of successful research). These outliers mask a continuing
decline in the completion of formal education at young ages. Prior to 1950, 32% of eventual Nobel Prize winners
in Economics completed their highest degree prior to age 25. After 1950, only 7% completed their highest degree
by age 25. Similar, large declines in Ph.D. completion by the very young are also seen in Physics, Chemistry, and
Medicine.
17 In the description of elements, consider the steady extentions from Mendeleev�s periodic table (1869) through

Seaborg�s re�nements (1940s); in molecular structure, from Kekule�s work on benzene (1866) to Woodward�s on
chlorophyll (1960) to Michel�s work on the complex structure of proteins involved in photosynthesis (1982); and in
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ogy, meanwhile, encapsulates a di¤use set of �elds (molecular biology, functional anatomy, surgery,

imaging technology, and behavioral science among others) that have not seen a common revolution.

Each sub-�eld sees its own march of ordinary science, with a few ideas within sub�elds that might

claim the status of paradigm shifters.18

Meanwhile, one �eld, physics, experienced a revolution in the 20th century so large that it

reached into virtually all the �eld�s sub-specialties. This is the advent of quantum mechanics (QM).

Starting with Planck�s idea in 1900 that radiation comes in discrete energy packets (quanta), the

work of Einstein, Bohr, Compton, Hertz and many others followed, breaking down the classical

world of physics and reaching �rm footing only with the advent of a consistent "quantum mechan-

ics", developed by Schrodinger, Heisenberg and others between 1924 and 1927. Many historians

chart the speci�c period from 1900-1927 as the time when the entire worldview of physics changed

(e.g. Kuhn, 1962; Jammer, 1966; Galison et al., 2002).

From a training point of view, physicists found themselves in the early 1900s wrestling with a

new, limited set of empirical puzzles and the failure of existing theory, allowing young minds to

achieve the research frontier relatively easily. The �rm establishment of QM in the late 1920s then

led back towards normal science, a long period of accumulation and re�nement, that has continued

since.19 In the data, the unique decline in age during the early 20th century among physicists

reaches a minimum in the late 1920s, coincident with the �rm establishment of quantum mechanics,

and then rose thereafter. Similar patterns occur in the Ph.D. age.

In sum, training dynamics appear to usefully predict variations in the age-invention relationship.

Digging deeper, the distinction between knowledge accumulation and revolution can provide a useful

chemical synthesis, from Sabatier�s simple hydrogenation process (1897) to Merri�eld�s large peptide methods (1960s).
Perhaps the most revolutionary idea in chemistry in the 20th century was Bohr�s atom (1913), although Bohr�s work
built on the quantum revolution in physics �and he was given the Nobel in physics for it.
18For example, Avery�s discovery (1944) that DNA, not proteins, was the genetic material, was arguably more

revolutionary.
19While controversial, some argue that string theory is an incipient revolution at this juncture.
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lens through which to view major training and age-invention patterns in the data, an interpretation

that is further explored below.

5 Interpretations and Implications

The evidence in this paper points to early-life cycle e¤ects and a particular role for training in

understanding the age-invention relationship. In this section, I explore more formal reasoning for

innovators�training decisions. I clarify the potential explanatory power of several hypotheses and

close by considering implications of the patterns uncovered in this paper.

Consider the following simple model. An innovator is born with no knowledge but endowed with

time. Innovators can invest in training, but knowledge acquisition delays the active production of

new ideas. Innovators compare the return to active production with the return to further training,

whatever the bene�ts that training brings.

A reasonable speci�cation, especially for highly motivated innovators, is that educational at-

tainment is chosen to maximize one�s lifetime research contribution. In particular, the choice

problem is:20

max
E

Z T

E
f(E)g(a)da

where f(E) represents the value of education to their innovative output, and g(a) > 0 represents

the individual�s natural ability as a function of age.21 Individuals spend some number of years, E,

focused on education during which time they do not innovate, followed by a career of innovation

until they die at time T . The amount of education in�uences their ultimate productivity, where

f 0(E) > 0 and f(0) = 0.

20More generally, this objective function captures cases where utility is de�ned to maximize fame or income, so
long as fame and income are monotonic functions of lifetime innovative output.
21One can also incorporate time discounting in the g(a) function.
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The �rst order condition for this problem is:

f 0(E)

Z T

E
g(a)da = f(E)g(E) (11)

which clari�es the central tradeo¤. Greater education brings a bene�t: the incremental e¤ect on

innovative output, f 0(E), weighted by the innovative ability that remains over your lifetime. But

it also brings an opportunity cost, f(E)g(E), the current innovation potential foregone. Figure

8 presents the optimization condition (11), with the terms rearranged. I label the upward sloping

curve the "longevity curve" and the downward sloping curve the "training curve".22 Increasing

training time, E�, is an endogenous response to rightward shifts in either curve.

Consider the implications of expansions in foundational knowledge. If knowledge accumulates

across generations, the training curve can shift rightward. This is a natural outcome if (a) there

is a set of preliminary skills one must master to reach the frontier in a �eld, and (b) the set of

these skills expands. For example, imagine that innovators need to know A, B, C to attack D,

the frontier. Following success at D, however, ensuing cohorts may need to know A, B, C, D, to

attack the new frontier.23 Foundational skills are complements, with the mastery of many needed

to become capable of frontier research. In its simplest form, one imagines f as a step function

with a step up after E years of training.

We may also imagine that the longevity curve shifts rightward. Increases in life expectancy

(T ) would have this e¤ect.24 Longer life expectancy can lead endogenously to increased training

time by providing longer lives over which to reap the fruit of formal training. There are several

22The longevity curve has some �nite value at age 0 and approaches 1 as E ! T , since limE!T

R T
E
g(a)da = 0.

The educational return curve has some �nite value at age T and approaches1 as E ! 0, since f(0) = 0 and therefore
limE!0 f

0(E)=f(E) is unbounded. Hence there is an interior solution to this problem. I have drawn these curves as
monotonic in E, so that the curves have a single crossing property, but this is not necessarily the case under general
functional speci�cations.
23A revolution would result if overcoming D involves overturning foundational knowledge as well, so the path to

the frontier changes, e.g., to A, B�, D, with B�replacing the old B, C.
24 Increases in innovation potential beyond middle age, an increase in g(a), would also have this e¤ect. The evidence

from Section 3 however, indicates that g(a) is not shifting after middle age.
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reasons to believe, however, that such a mechanism may not provide an adequate explanation for

the empirical patterns. First, mean life expectancy at age 10 was already greater than 60 in 1900,

while it is clear from Sections 2 and 3 that innovation potential is modest beyond 60, so that adding

years of life beyond this age would have at most mild e¤ects on the optimization.25 Related, even

modest discounting would substantially limit the e¤ect of gains felt 35+ years beyond the end of

training on the marginal training decision. Next, common life expectancy changes cannot explain

the unique cross-�eld and cross-time variation explored in Section 4, such as the unique behavior of

physics. Moreover, Figure 7 suggests, if anything, accelerating age trends after the second world

war, which is hard to explain with increased longevity, where post-war gains have slowed.

Another set of explanations involve institutional or sociological e¤ects on the training curve.

A plausible story might involve signaling. If establishing a reputation is a prerequisite for grant-

based research, and research has become more grant-based (expensive) over time, then extensions

of formal training or apprenticeship may serve to signal reputation - a di¤erent interpretation of the

educational return curve. While this force may be operating, it also su¤ers as a general explanation;

for example, Figure 7 shows a substantial age increase at great achievement among the economists

alone, and these prizewinners have had little need for large grants.

Other forces might also be considered within this framework, none of which are mutually ex-

clusive and many may be operating.26 At the same time, reasoning about shifts in foundational

knowledge appears to provide a parsimonious explanation for the major patterns in this paper.

A di¢ culty in directly establishing this thesis is the di¢ culty in directly measuring the stock of

25This life expectancy data is for white males in the United States. (Source: Department of Health and Human
Services, National Center for Health Statistics; National Vital Statistics Reports, vol 53., no. 6, Nov. 10, 2004.) The
life-expectancy of innovators, who have several advantages, would likely be higher still. In fact, the age at death for
great innovators in the sample who were born between 1900 and 1910 averages 80.
26As a �nal example, one may imagine declining educational e¢ ciency, shifting the training curve rightward. Such

a decline in training e¢ ciency would have to be very large to explain the estimated 8 year delay, from age 23 to 31,
in achieving high innovation potential, and one might imagine that educational e¢ ciency increases with technology,
rather than decreases, suggesting some skepticism for this particular point of view. The biographies of Nobel prize
winners further suggest a degree of focus that is not commensurate with slow or undirected training.
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foundational knowledge - the "distance to the frontier". But we can go further by considering

additional, indirect evidence. To see this, we further articulate the training decision.

If we imagine that the innovators must reach the frontier to do innovative work, the innovator

still has a decision over the breadth of expertise along the frontier. To �x ideas simply, let

E = bD

whereD measures distance to the frontier and bmeasures the innovator�s breadth along the frontier.

Total training time is then determined in part by the capacity for specialization. For example,

the chemist may choose to come a frontier expert in the synthesis of metal alloys (narrower b),

or both alloys and organics (wider b).27 This specialization margin presents a useful empirical

application. Inferences about knowledge accumulation, D, based only on investigations of training

time, E, may be clouded by other possible forces as discussed above. But we might infer knowledge

accumulation more de�nitively by observing E in combination with some measure of breadth of

expertise, b. That is, D = E=b. If people spend longer in training (more E) and yet come out the

other end more specialized (less b), then the distance to the frontier has increased.

This reasoning is explored in Jones (2005), which studies "ordinary" inventors, looking at all

U.S. patents in the 1975-2000 period. There are two key results. First, the age at �rst patent

is rising at a rate of 6 years/century. Age at �rst patent provides an outcome-based measure

to delimit the training and research phases. Remarkably, this estimate for the extending training

period is extremely similar to the trends in this paper. Second, proxy measures for specialization

show increased specialization across the full range of technological �elds. One proxy measure is

research collaboration in patenting - measured as team size - which is increasing at over 10% per
27The capacity for specialization will likely be imperfect. For example, the chemist may specialize more or less on

certain types of synthesis but regardless must understand theories of valence and molecular structure. The knowledge
space is thus a mix of common foundational ideas and more specialized ideas. When the stock of knowledge grows,
we would typically imagine that innovators would respond on both dimensions, partly by increasing their training
time and partly by increasing specialization (though the following argument is empirical and does not require this
assumption).
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decade.28 A more direct measure of specialization considers the probability that an individual

switches technological areas between consecutive patents. Jones (2005) shows that the probability

of switching technological areas is substantially declining with time. These analyses indicate that

training time, E, is rising, while measures of breadth, b, are simultaneously declining. It is then

di¢ cult to escape the conclusion that the distance to the knowledge frontier is rising. This evidence

also acts to con�rm - with "ordinary" invention - the rising age pattern found among the great

minds.

5.1 Implications

Shifts in life-cycle research productivity can have diverse implications, from the e¢ cient targeting

of grants to the design of tenure processes and the timing of child rearing. Here I will emphasize

two aggregate implications, for core issues in economic growth and scienti�c progress, that are

suggested by the particular life-cycle shifts identi�ed in this paper.

First, other things equal, the shorter the period that innovators spend innovating, the less their

output as individuals. If innovation is central to technological progress, then forces that reduce the

length of active innovative careers will reduce the rate of technological progress. This e¤ect will be

particularly strong if innovators do their best work when they are young. In fact, aggregate data

patterns, much debated in the growth literature, have noted long-standing declines in the per-capita

output of R&D workers, both in terms of patent counts and productivity growth (Machlup 1962;

Evenson, 1991; Jones 1995a; Kortum, 1997). Simple calculations from aggregate data suggest that

the typical R&D worker contributes approximately 30% as much to aggregate productivity gains

today as she did at the opening of the 20th Century.29 This paper provides micro-evidence that

28Large and general upward trends in research collaboration are also found in journal publications (e.g. Adams et
al, 2004).
29Combining Machlup�s data on growth in knowledge producing occupations for 1900-1959 (Machlup 1962, Table

X-4) with similar NSF data for 1959-1999 (National Science Foundation, 2005), we see that the total number of
knowledge-producing workers in the United States has increased by a factor of approximately 19. Meanwhile,
the U.S. per-capita income growth rate, which proxies for productivity growth over the long-run, suggests a 6-fold
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can explain part of that trend. Other things equal, the estimates of Section 3 indicate a 30%

drop in the lifetime innovation potential over the century, or nearly half of the overall decline in

individual research productivity.30 ;31

Second, the facts in this paper can also inform basic debates about the nature of scienti�c

progress. A core question in the history of science is whether scienti�c progress happens primarily

through accumulation and re�nement of ideas or through radical, "Kuhnian" revolution. These

debates are traditionally enjoined through historical argument, such as Kuhn�s seminal analysis of

physics. The age data in this paper can provide, alternatively, a data-driven test. If the aging

phenomena detailed in this paper suggest, as discussed above, accumulations of knowledge, then

Kuhnian revolutions appear rare.

6 Conclusions

Great minds produce their greatest insights at substantially older ages today than they did a century

ago. This upward age trend is not due simply to an aging population, but comes from a substantial

decline in the innovative output of younger innovators. Meanwhile, there is no compensatory

expansion of innovative output at later ages. Innovators are the engines of technological change

and, other things equal, the less time an innovator spends successfully innovating, the less her

increase in productivity levels (based on a steady growth rate of 1.8%; see Jones 1995b). The average rate at which

individual R&D workers contribute to productivity growth is
�
A=LR, or gA=LR , where A is aggregate productivity,

g is the productivity growth rate, and LR is the aggregate number of R&D workers. The average contribution of
the individual R&D worker in the year 2000 is then a fraction

�
A2000=A1900

�
=(L2000R =L1900R ) = 6=19 (32%) of what it

was in 1900.
30This paper estimates the relative innovation potential across age groups, so that forces that enhance or reduce

the impact of all innovators, regardless of age, are not captured. Other in�uences, on top of delays at the beginning
of the life-cycle, may therefore help to explain further portions of the declining trend in the average contributions
of innovators. Suggested mechanisms include innovation exhaustion or "�shing out" stories (e.g. Evenson, 1991;
Kortum, 1997), as well as narrowing expertise and innovative capacity as an endgenous response to an increased
educational burden. Jones (2005) provides theory and empirical support for this latter mechanism.
31Note that these aggregate implications, stemming from the career contraction, come regardless of the particular

cause of the early life-cycle delay. If purely institutional e¤ects such as signaling were responsible, then there
may be nothing inevitable in the career contraction going forward, and the contraction may be highly elastic to
institutional reform. Meanwhile, there is considerable evidence that shifts in foundational knowledge can explain
several dimensions of the age patterns, and other patterns. In this case, the delay in the early life-cycle may be an
e¢ cient response to a by-product of technological progress - the accumulation of foundational knowledge.
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lifetime output. The estimates point to a 30% decline in life-cycle innovation potential over the

20th Century.

This paper further explores the role of training in understanding the early life-cycle dynam-

ics, investigating evidence from world wars, age at Ph.D., and cross-�eld, cross-time variation in

training and achievement ages. These analyses further unpack the black box of the age-invention

relationship and point towards the training phase as a key explanation for the trends we see. Yet

the economics literature has focused little on the human capital investments of innovators. Given

that innovators spend some of their youngest and potentially brightest years undertaking educa-

tional investments, understanding the tradeo¤s at the beginning of the life-cycle may be �rst-order

for understanding the ultimate output of these individuals. Certainly, great innovation is less and

less the provenance of the young.
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7 Appendix

This Appendix derives the econometric model of Section 3 as an aggregation across the stochastic
behavior of individuals.

Consider a population N . Given a witnessed innovation, the probability the innovation was
produced by an individual i is de�ned by:

Pr(i) =
xiP

fi2Ng xi

where xi represents the innovation potential of person i. Innovation potential measures the relative
innovative strength of an individual.32

For estimation, consider the model in terms of cohorts of equally-aged individuals. De�ne the
set of cohorts as A, where a � A represents the cohort with age a. Let the set of individuals in
this cohort be Na � N , and let the number of individuals in such a set be de�ned as jNaj. The
probability a witnessed innovation is produced by an individual in the cohort with age a is,

Pr(a) =

P
fi2Nag xiP
fi2Ng xi

=
jNaj

_
xaP

fa2Ag jNaj
_
xa

where
_
xa is the average innovation potential of individuals in the cohort with age a. Dividing

top and bottom by the size of the entire population, jN j, and de�ning the age distribution of the
population as pa = jNaj = jN j, we rewrite this expression as,

Pr(a) =
pa
_
xaP

fa2Ag pa
_
xa

which is the basis for (2) in the text.
Now consider the basis for the sub-model of cohort innovation potential, represented by (3) and

repeated here
_
xa = L1(a)L2(a)

To derive this expression, assume that innovators start their lives with a period of education
during which they do not innovate. Let the (stochastic) length of education for individual i be ei.
Additionally, de�ne g(ai; zi) as the individual�s innovation potential if fully educated, where zi is
some (stochastic) measure of talent, e¤ort, health, and any other factor that in�uences innovative
ability. The innovation potential of individual i as a function of their age is then,

xi = I(ai � ei)g(ai; zi)

where I(ai � ei) is an indicator function equal to 1 if ai � ei and 0 otherwise. Now employ a law
of large numbers to write the cohort average innovation potential as,

_
xa(t)

p! E[I(ai � ei)g(ai; zi)]

32One may think of innovators as being drawn, with replacement, from a box of names. A particular person�s
innovation potential then represents the frequency with which his or her name appears in the box, where we imagine
that innovators with higher ability or e¤ort level appear more often.
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Assuming additionally that ei and zi are independent this expectation simpli�es to,

_
xa(t)

p! Pr(ai � ei)E[g(ai; zi)] (12)

giving the structure in (3). To estimate L1(a) = Pr(ai � ei), we assume that ei is distributed
logistically within cohorts, and we similarly take a logistic speci�cation for L2(a) = E[g(ai; zi)].

8 Data Appendix

This appendix describes the data sources used in the paper, providing both reference material and
some underlying details of the methodology used in data collection.

8.1 Data on great innovators

A wealth of biographical information is available for Nobel Prize winners. The most useful imme-
diate source is the o¢ cial website of the Nobel Foundation, nobelprize.org. This website provides
lists and written biographies of all winners, and was used to obtain dates and locations of birth,
the �eld of the prize, the year and location of the highest educational degree, and the year(s) in
which the prize-winning research was performed. Altogether, I was able to determine dates of birth
for all 547 Nobel Prize winners between 2001 and 2003, and the period of key research for all but
3 of these. In practice, the data identi�es a single year of great achievement - i.e. the year of
success - for 75% of the cases. In the remainder of cases, the achievement for which the Nobel
is awarded appears to encompass multiple sub-contributions, in which cases early and late dates
of achievement were collected. In these cases, the estimations in the text use the middle year to
de�ne the age at great achievement, although results using either the �rst or last year of the key
research are extremely similar in general and, in particular, nearly identical in the size of the trends
and their statistical signi�cance. The year or period of key research was usually straightforward to
ascertain through the Nobel Foundations biographies, but in cases where these did not accurately
identify the year or period of key research, other sources were consulted. The primary printed
materials used were:

Schlessinger, B. and Schlessinger, J. The Who�s Who of Nobel Prize Winners, 1901-1995. Oryx
Press, Phoenix AZ 1996.

which was cross-referenced with,

Daintith, J. and Gjertsen, D. The Grolier Library of Science Biographies. Vols. 1-10. Grolier
Educational, Danbury CT 1996.

Debus, A.G. ed. World Who�s Who in Science: A Biographical Dictionary of Notable Scientists
from Antiquity to the Present. Marquis Who�s Who Inc., Chicago 1968.

McMurray, E.J., Kosek, J.K., and Valade, R.M. Notable Twentieth-Century Scientists. Vols. 1-4.
Gale Research, Detroit 1995.

Williams, T.I. ed. Biographical Dictionary of Scientists. John Wiley and Sons, New York 1974.
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Data on great inventors were collected from two technological almanacs that provide, by year, a
list of notable technological advances in that year. These almanacs typically provide the date and
location of birth of the innovator responsible, providing a set of 286 inventors in the 20th Century.
The almanacs used were,

Bunch, B. and Hellemans, A. The Timetables of Technology. Simon and Schuster, New York
1993.

Ochoa, G. and Corey, M. The Timeline Book of Science. Ballantine Books, New York 1995.

The �eld of research is given according to set categories in both the Bunch et al and Ochoa et
al sources. I condense the categorizations across these sources into nine �elds: Communication,
Computers & Electronics, Energy, Food & Agriculture, Materials, Medicine, Tools & Devices,
Transportation, and Other. These categorizations de�ne the �eld �xed e¤ects in the econometric
speci�cation (1), but the results are not sensitive to speci�c categorizations.

8.2 Data on great athletes

For the Most Valuable Player Award in baseball, dates of birth and dates of the award were taken
electronically from the Lahman Baseball Database, version 5.1, which was released on January 24,
2004. This database contains an enormous set of data for baseball players from 1871 through the
present. It can be found at http:/baseball1.com/.

For world record breakers in track & �eld, dates of birth, dates of record breaking event, and
nationalities were taking from the following source:

Lawson, G. World Record Breakers in Track and Field Athletics, Human Kinetics, Champaign,
IL 1997.

8.3 Data on population age distribution

One and �ve percent micro-samples of the U.S. census are available electronically through IPUMS,
the Integrated Public Use Microdata Series, which is maintained by the University of Minnesota:

Steven Ruggles, Matthew Sobek, Trent Alexander, Catherine A. Fitch, Ronald Goeken, Patricia
Kelly Hall, Miriam King, and Chad Ronnander. Integrated Public Use Microdata Series:
Version 3.0 [Machine-readable database]. Minneapolis, MN: Minnesota Population Center
[producer and distributor], 2004.

The smallest sample used was for the 1900 census, whose micro-sample provided data on approx-
imately 100,000 individuals. The largest sample used was for the 2000 census, whose micro-sample
provided data on approximately 2.8 million individuals. Existing census research available on
the website (www.ipums.umn.edu/usa/chapter3/chapter3.html) indicates that these micro-samples
provide accurate estimates of the population at large with regard to age. Population data for years
in between decennial census years were determined by linear interpolation. Data for the year 1930
are not available, requiring interpolation for years between 1920 and 1940.
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The subgroup of active workers is de�ned by having active labor force participation (LAB-
FORCE=1) in the IPUMS data. The IPUMS attempts to recode census data to allow comparisons
over time on a common basis, even if the census questions asked are not entirely consistent. From
1940, LABFORCE=1 for any individual who is actively working or seeking work. In 1900, the
variable requires that individuals report any profession and have worked in the last 12 months. In
1910-1920, it includes those who report any "gainful occupation". This subsample is still large,
with a minimum of 40,000 observations in 1900 and 1.3 million observations in 2000.

The subgroup of professional scientists and engineers requires further construction. The IPUMS
uses the variable OCC1950 to de�ne occupations across census years according to a common set
of categories. I then take a subsample of these occupation codes that include the following rele-
vant descriptions: professors and instructors in all subjects except social sciences (codes 012-026);
engineers (codes 041-049); and natural scientists (codes 061-069). These data have two potential
di¢ culties: �rst, the samples are substantially smaller, with only 56 observations in 1900 and 353
in 1910, rising to approximately 25,000 in the year 2000; second, the occupation is not de�ned until
it is begun, in which case those still in school are not included. To create reasonable population
estimates I �rst smooth these population data with an Epanechnikov kernel and a bandwidth of 2
years. Second, I impute the number of innovators still in training (those aged 15-29) based on the
number of employed workers ten years later who are ten years older. The results are not sensitive
to particular kernel bandwidths or age imputation schemes. In results not reported, I have also
considered a broader set of all "professional, technical" workers (codes 001-099), which gives similar
results.
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Table 1:  Age Trends among Great Innovators 
 Dependent Variable:  Age at Great Achievement 
 Nobel Prize Winners Great Inventors 
 (1) (2) (3) (4) (5) (6) 

Year of Great 
Achievement  

(in 100’s) 

 
5.83*** 

  (1.37) 

 
6.34*** 

   (1.36) 

 
7.79*** 

   (1.54) 

 
4.86** 
(2.31) 

 
6.60** 
(2.58) 

 
8.18** 
(3.29) 

Field Fixed 
Effects No Yes Yes No Yes Yes 

Country of Birth 
Fixed Effects No No Yes No No Yes 

Number of 
observations 544 544 544 286 286 248 

Time span 1873-
1998 

1873-
1998 

1873-
1998 

1900- 
1991 

1900- 
1991 

1900- 
1988 

Average age 38.6 38.6 38.6 39.0 39.0 38.9 

R2 0.032 0.068 0.189 0.016 0.098 0.173 

Notes:  Coefficient on year of great achievement gives age trend in years per century.  Standard 
errors are given in parentheses. Field fixed effects for Nobel Prizes comprise four categories:  
Physics, Chemistry, Medicine, and Economics.  Field fixed effects for great inventors comprise 
nine categories:  Communication, Electronics and Computers, Energy, Food and Agriculture, 
Materials, Medicine, Tools and Devices, Transportation, and Other. 
**  Indicates significance at a 95% confidence level. 
*** Indicates significance at a 99% confidence level. 

 
 



 
 

Table 2:  Maximum Likelihood Estimation of Life-Cycle Innovation Potential 
   
  (1) (2) (3) (4) (5) (6) 

µ0 

Initial Mean, 
in Years 

24.0 
(2.05) 

23.3 
(2.30) 

23.4 
(1.95) 

22.6 
(2.84) 

22.8 
(2.84) 

25.8 
(1.07) 

µ1 

Trend, in 
Years/Century 

7.76 
(3.22) 
[.016] 

8.29 
(3.49) 
[.018] 

8.32 
(2.71) 
[.002] 

8.91 
(5.23) 
[.088] 

10.29 
(4.56) 
[.024] 

5.32 
(1.97) 
[.007] 

Early Life 
Cycle 

Logistic 
Curve 

ω 
Variance 
Parameter 

2.40 
(0.37) 

2.47 
(0.43) 

2.38 
(0.40) 

2.43 
(0.73) 

2.30 
(0.46) 

2.21 
(0.20) 

        

θ0 

Initial Mean, 
in Years 

45.5 
(2.36) 

46.6 
(2.21) 

50.0 
(3.90) 

53.7 
(8.16) 

43.7 
(3.54) 

46.9 
(3.70) 

θ1 

Trend, in 
Years/Century 

-0.00e-03 
(8.63e-03) 

-0.00e-03 
(6.70e-03) 

0.14e-03 
(6.88e-03) 

-4.61 
(12.1) 

0.00e-03 
(1.28e-03) 

-0.71 
(5.17) 

ρ 
Variance 
Parameter 

7.05 
(1.10) 

7.54 
(0.91) 

9.12 
(1.60) 

6.64 
(2.72) 

6.24 
(0.99) 

7.38 
(7.40) 

Later Life 
Cycle 

Logistic 
Curve 

       

Population U.S. 
Population 

Active 
Workers 

Scientists 
and 

Engineers 

U.S. 
Population 

U.S. 
Population 

U.S. 
Population 

Inventor Type All All All Technology 
Almanacs 

Nobel  
Prize All 

Nationality US Born US  Born US Born US Born US Born All 
Data 

Number of 
Invention 

Observations 
294 294 294 127 181 738 

Log 
Likelihood 

 -1050.9 -1053.0 -1056.7 -463.6 -633.6 -2641.2 

Notes:   All estimates are maximum likelihood.  Standard errors are given in parentheses and calculated using the 
inverse of the information matrix.  P-values for the trend in the early life-cycle are given in square brackets.   

 



 
Table 3:  Maximum Likelihood Estimation:  Further Specifications 

   
  (1) (2) (3) (4) 

µ0 

Initial Mean, in 
Years 

24.8 
(1.94) 

24.6 
(1.84) 

24.5 
(2.36) 

25.5 
(1.19) 

µ1 

Trend, in 
Years/Century 

6.32 
(3.27) 
[.053] 

6.05 
(2.94) 
[.039] 

6.47 
(3.95) 
[.101] 

5.89 
(2.12) 
[.005] 

ω0 
Initial Variance 

Parameter 

2.86 
(0.83) 

3.42 
(1.01) 

3.08 
(1.14) 

2.02 
(4.18) 

Early Life 
Cycle 

Logistic 
Curve 

ω1 
Trend, Variance 
Years/Century 

-0.88 
(1.42) 

-1.74 
(1.60) 

-1.29 
(1.80) 

0.43 
(7.35) 

      

θ0 

Initial Mean, in 
Years 

45.0 
(4.49) 

45.3 
(3.22) 

48.5 
(4.88) 

46.8 
(3.79) 

θ1 

Trend, in 
Years/Century 

0.99 
(4.06) 

2.29 
(3.28) 

2.79 
(6.79) 

-0.93 
(2.53) 

ρ0 
Initial Variance 

Parameter 

6.81 
(2.06) 

6.97 
(1.47) 

8.42 
(2.13) 

7.67 
(0.73) 

Later Life 
Cycle 

Logistic 
Curve 

ρ1 
Trend, Variance 
Years/Century 

0.45 
(1.77) 

1.04 
(1.46) 

1.27 
(3.07) 

-0.42 
(1.09) 

      

Population Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 

Entire U.S. 
Population 

Nationality U.S. Born U.S. Born U.S. Born All Data 
Number of 
Invention 

Observations 
294 294 294 738 

Log 
Likelihood 

 -1050.8 -1052.6 -1056.4 -2641.1 

Notes:   All estimates are maximum likelihood.  Standard errors are given in parentheses and 
calculated using the inverse of the information matrix.  P-values for the trend in the early life-
cycle are given in square brackets. 



 
Table 4:  Age Trends at Highest Degree among Nobel Prize Winners 

 Dependent Variable:  Age at Highest Degree 
 (1) (2) (3) (4) (5) 

Year of Highest 
Degree 

(in 100’s) 

 
4.11*** 
(0.61) 

 
3.85*** 
(0.62) 

 
3.86*** 
(0.62) 

 
4.39*** 
(0.65) 

 
3.22*** 
(1.22) 

 
Field Fixed 

Effects 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

 
Country of 

Degree Fixed 
Effects 

 
No 

 
No 

 
No 

 
Yes 

 
-- 

Data All Doctorate 
Only All All U.S. 

Degree 
Number of 

observations 505 484 505 505 213 

Time span 1858-
1990 

1858-
1990 

1858-
1990 

1858-
1990 

1888-
1990 

Average age 26.5 26.6 26.5 26.5 26.6 

R2 .084 .075 .096 0.283 .060 
Notes:  Coefficient on year of highest degree gives age trend in years per century.  
Standard errors are given in parentheses. Field fixed effects for Nobel Prizes 
comprise four categories:  Physics, Chemistry, Medicine, and Economics.  
**  Indicates significance at a 95% confidence level. 
*** Indicates significance at a 99% confidence level. 

 
 



Table 5: War Interruptions 
         
 Ph.D Age Lag between Degrees Achievement Age  Probability of Invention Between ages 25 and 30 
 (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) 

WW2 1.941*** 
(0.558) 

2.034*** 
(0.522) 

2.835*** 
(0.544) 

2.797*** 
(0.517) 

2.286** 
(1.148) 

2.727** 
(1.187) Treatment -.098*** 

(.024) 
-.108*** 
(0.019) 

-0.107** 
(0.023) 

-0.110*** 
(0.020) 

WW1 2.339** 
(1.149) 

1.911* 
(1.104) 

2.790** 
(1.125) 

2.194** 
(1.096) 

0.374 
(2.723) 

0.335 
(2.830) Control .060 

(.048) 
.160*** 

(.060) 
0.070 

(0.056) 
0.176*** 
(0.068) 

Year of 
Doctorate 

0.037*** 
(0.006) 

0.042*** 
(0.006) 

0.021*** 
(0.008) 

0.027*** 
(0.008) -- -- Year of Great 

Achievement 
-.0013*** 

(.0004) 
-.0015*** 

(.0004) 
-.0015*** 

(.0005) 
-.0017*** 

(.0005) 

Year of Great 
Achievement 

-- -- -- -- 0.068*** 
(0.014) 

0.079*** 
(0.016) 

Sample Mean of 
Dependent 
Variable 

0.117 0.117 0.128 0.128 

Missing 
Educational 
Observation 

-0.634* 
(0.366) 

-1.098*** 
(0.403) -- -- 2.111** 

(0.834) 
0.452 

(0.985) War WW1 WW2 WW1 WW2 

Field Fixed 
Effects 

No Yes No Yes No Yes Field Fixed 
Effects No No Yes Yes 

Country of  Birth 
Fixed Effects 

No Yes No Yes No Yes Country of  Birth 
Fixed Effects No No Yes Yes 

Number of 
observations 

508 508 348 348 544 544 Number of 
observations 780 780 664 664 

R2 0.12 0.37 0.10 0.36 0.05 0.20 Log  
Likelihood -274.1 -270.6 -237.1 -234.4 

Notes, Left Panel:  Results are OLS with standard errors in parentheses.  WW2 and WW1 are dummies equal to 1 for individuals who happened to be between their 
undergraduate and graduate degrees at the outset of the indicated war (1939 for WW2 and 1914 for WW1).  Notes, Right Panel:  Results are for Probit model with 
coefficients reporting marginal probabilities and standard errors in parentheses.  Treatment is a dummy equal to 1 for individuals born 1893-1898 (World War 1 
specifications) and 1920-1925 (World War 2 specifications).  Control is a dummy equal to 1 for individuals born 1893-1903 (World War 1) and 1920-1930 (World War 2).  
Field fixed effects comprise five categories:  Physics, Chemistry, Medicine, and Economics for Nobel Prizes and a separate category for great inventors.  Specifications (9) 
and (10) have fewer observations because some country of birth fixed effects predict failure perfectly and these observations are dropped.  * Indicates significance at a 90% 
confidence level.  ** Indicates significance at a 95% confidence level.  *** Indicates significance at a 99% confidence level. 



Figure 1:  The Age Distribution of Great Innovation 
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Figure 2:   Shifts in the Age Distribution of Great Innovation 
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Figure 3:  The Age Distribution of Baseball’s Most Valuable 
Player 
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Figure 4:  Model of Innovation Potential over the Life-Cycle 
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Figure 5:  Maximum Likelihood Estimates for the Potential to 
Produce Great Innovations as a Function of Age 
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Figure 6:  World War Interruptions and the Decline of Young 
Innovators 
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Figure 7: Ages at Ph.D. and Achievement over Time, by Field 
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Figure 8:  The Equilibrium Choice of Educational Attainment 
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