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Abstract. I analyze mixed strategy equilibria in a Downsian model with two office-motivated

candidates in which one candidate is endowed with a sufficiently large valence advantage that a voter

might prefer this candidate even if the voter strictly prefers the other candidate’s policies. There

is a discrete one-dimensional policy space and the preferences of the median voter are uncertain. I

show that there is a range of moderate policies with no gaps that are optimal for the advantaged

candidate. There is also a range of liberal policies with no gaps and a corresponding range of

conservative policies with no gaps that are optimal actions for the disadvantaged candidate. The

upper and lower bounds on these ranges of policies vary in predictable ways with the size of the

advantaged candidate’s advantage.
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1. Introduction

One of the most standard frameworks for analyzing candidate policy selection in elections is with

a Downsian model (Downs, 1957) in which candidates simultaneously commit to policies on a known

policy space and voters vote for whichever candidate proposes the policy they like best. Such a

framework fails to take into account that candidates often possess valence characteristics unrelated

to policy selection that may be important to voters. For example, a candidate may have greater

experience in public office, a superior military background, or previous successes in improving the

economy that lead the candidate to be perceived as better equipped to handle problems in the future.

These valence characteristics may distinguish a candidate on a ‘good-bad’ dimension unrelated to

whether the candidate chooses a liberal or conservative policy.
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This paper presents a characterization of a class of equilibria in a Downsian model in which

one candidate possesses a valence advantage. I consider a model in which two office-motivated

candidates choose policies simultaneously in a discrete one-dimensional policy space. The precise

policy preferences of the median voter are uncertain, but the voter prefers the candidate with

superior valence unless the other candidate chooses a policy that is sufficiently closer to the median

voter’s ideal point. Throughout I restrict attention to cases in which the valence advantage is large

enough that a voter might prefer the candidate with superior valence even if the voter strictly

prefers the other candidate on the basis of policy positions.

I show that there is a range of moderate policies with no gaps that are optimal for the advantaged

candidate. There is also a range of liberal policies with no gaps and a corresponding range of

conservative policies with no gaps that are optimal actions for the disadvantaged candidate. The

most moderate policy guaranteed to be an optimal action for the disadvantaged candidate is less

moderate for larger sizes of the advantaged candidate’s advantage. And the most extreme policy

that is optimal for the advantaged candidate is more moderate than the most extreme policy that

is optimal for the disadvantaged candidate by an amount approximately proportional to the size of

the advantaged candidate’s advantage.

The analysis of equilibria in a Downsian model with an advantaged candidate differs significantly

from that when no candidate has a valence advantage. When there is no candidate valence, the

Downsian model predicts that office-motivated candidates will both choose policies equal to the

estimated median voter’s ideal point. But if one candidate is endowed with a valence advantage,

this result no longer holds. In fact, as long as there is uncertainty about voter preferences, pure

strategy equilibria normally fail to exist.1

To understand why, note that the candidate with a valence advantage wishes to choose the

same policy as the disadvantaged candidate so that all voters will strictly prefer the candidate

with the valence advantage and the advantaged candidate will win with certainty. Similarly, the

disadvantaged candidate wishes to choose a different policy than the advantaged candidate so that

there will be at least some chance that the voters prefer the disadvantaged candidate. Since the

disadvantaged candidate needs to prevent the advantaged candidate from being able to choose

the same policy, this candidate must employ mixed strategies. And to create incentives for the

1The only situations in which there are pure strategy equilibria are those in which one candidate’s valence advantage
is so large that this candidate wins with certainty in equilibrium. Examples of such equilibria can be found in
Ansolabehere and Snyder (2000) and Dix and Santore (2002).
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disadvantaged candidate to use mixed strategies, the advantaged candidate must also use mixed

strategies. This necessitates the analysis of mixed strategy equilibria.

To the best of my knowledge there has only been one attempt to characterize mixed strategy

equilibria in a Downsian model with candidate valence. Aragones and Palfrey (2002) consider

an analogous model to that in the present paper with two office-motivated candidates competing

in a discrete one-dimensional policy space with uncertainty about the preferences of the median

voter. However, Aragones and Palfrey (2002) focus attention on cases in which candidate valence is

minimal in the sense that voters vote for the candidate with superior valence if they are indifferent

between the policies proposed by the two candidates, but vote for whichever candidate proposes

the voter’s preferred policy otherwise.

When candidate valence is minimal, Aragones and Palfrey (2002) note that there is a mixed

strategy equilibrium in which both candidates randomize amongst a small number of moderate

policies. The advantaged candidate chooses slightly more moderate policies on average, and in the

limit as the number of points in the policy space becomes large, the candidates choose strategies

arbitrarily close to those they would use if there were no candidate valence. However, Aragones

and Palfrey (2002) also note that this type of equilibrium might fail to exist if candidate valence

is sufficiently large that a voter might prefer the candidate with superior valence even if the voter

prefers the other candidate on the basis of policy positions. I consider the form of equilibria when

a candidate’s valence advantage is large in this paper.

Though I do not characterize all equilibria in this game, my paper does give a characterization of

the optimal policy choices for the candidates that may arise in a particular equilibrium of the game.

And while I am able to derive which policies will be optimal in equilibrium, it should be noted that

I do not calculate the precise probabilities with which the candidates take various actions. Instead

I use indirect arguments to show that there will be a mixed equilibrium of a particular form. The

proof techniques used in this paper are thus entirely different from those in Aragones and Palfrey

(2002).

Other papers on candidate valence address different issues than finding mixed equilibria in a can-

didate location game when two office-motivated candidates choose policies simultaneously. Aragones

and Palfrey (2004) show that the predictions in Aragones and Palfrey (2002) are supported in an

experimental setting. Aragones and Palfrey (2005) and Groseclose (2001) analyze equilibria in
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a candidate location game in which the candidates have policy motivations. Adams (1999) and

Schofield (2004) consider the effect of candidate valence on equilibria when there are multiple can-

didates. Berger et al. (2000) and Bernhardt and Ingberman (1985) consider models in which policy

choices are not known with certainty but some candidate has the advantage of a lower variance in

policy action. Ansolabehere et al. (2001), Fiorina (1973), and Stone and Simas (2007) conduct em-

pirical studies on the effect of incumbency advantages on candidate policy selection. Finally, several

papers analyze valence effects in the context of electoral contests in which campaign expenditures or

other costly actions can affect the outcome of the election (e.g. Ashworth and Bueno de Mesquita,

2009; Carillo and Castanheria, 2008; Erikson and Palfrey, 2000; Iaryczower and Mattozzi, 2009;

Meirowitz, 2008; Prat, 2002a; b).

While mixed strategies might seem like a slightly unnatural way for candidates to choose policies,

it is worth noting that it is fairly standard to analyze mixed strategy equilibria in such games. In

addition to work on candidate valence, several papers have considered mixed strategy equilibria in

the context of elections in which candidates choose policies in multi-dimensional spaces (e.g. Banks

et al., 2002; Duggan, 2007; Duggan and Jackson, 2005; McKelvey, 1986). And researchers have also

analyzed mixed strategy equilibria in Hotelling’s (1929) related game in which firms can compete

by choosing locations (e.g. Bester, 1996; Osborne and Pitchik, 1986; 1987; Shaked, 1982).

2. The Model

I study a model very similar to that in Aragones and Palfrey (2002). There is an election between

two candidates A and D, where A is the candidate with superior valence. The candidates choose

policies from the policy space X = {x1, . . . , xn}, where xi = i−1
n−1

for all i = 1, . . . , n. I let xA denote

the policy chosen by A and xD the policy chosen by D. Each candidate obtains a payoff equal to

the candidate’s probability of winning the election.

The median voter has an ideal point xm ∈ X. This ideal point is not observed by either candidate.

Instead, each candidate shares a common belief that the probability the median voter’s ideal point

is xi is ρi, where ρi ≥ 0 for all i and
∑n

i=1 ρi = 1. If A wins the election, then the median voter

obtains a utility of Um(xA) = δ − |xm − xA|, where δ > 0. If D wins the election, then the median

voter obtains a utility of Um(xD) = −|xm − xD|.
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I assume, as do Aragones and Palfrey (2002), that n is even and ρi = 1
n

for all i. However, I also

note throughout the manuscript how the results would be affected by the more general assumption

that the distribution of the median voter’s ideal point is weakly single-peaked and symmetric about

the center of the policy space or ρi = ρn−i+1 for all i and ρi is nondecreasing in i for all i ≤ n
2
. Most

of the results continue to hold with virtually identical proof techniques as long as the distribution

of the median voter’s ideal point is weakly single-peaked and symmetric about the center of the

policy space.

I also assume that there is some positive integer a for which a−1
n−1

< δ < a
n−1

. This assumption

will hold as long as δ is not an integral multiple of 1
n−1

and is solely made to ensure that the median

voter will always have strict preferences between the two candidates. The only difference between

the model I consider and that in Aragones and Palfrey (2002) is that Aragones and Palfrey (2002)

restrict attention to the case a = 1, but I assume throughout that 1 < a < n
2
. The assumption

that a > 1 means that a voter might prefer candidate A even if the voter strictly prefers D’s policy

position. The assumption that a < n
2

is made to ensure that δ is small enough that the candidate

with superior valence will not win with certainty in equilibrium.

The game proceeds as follows. Both candidates simultaneously choose policy positions from the

policy space X. The median voter observes these policy choices and votes for whichever candidate

affords the voter a higher utility. The candidate chosen by the median voter is then elected. A

justification for restricting attention to the median voter in this setting can be found in Groseclose

(2007).

A strategy for a candidate σ = (σ1, . . . , σn) specifies the probability σi with which the candidate

chooses each policy xi in the policy space X. I let σA denote the strategy chosen by A and σD the

strategy chosen by D. Throughout the paper I also let xi denote the strategy in which a candidate

chooses xi with probability 1.

If candidate A uses the strategy σA and candidate D uses the strategy σD, I let ΠA(σA, σD)

denote the probability that A wins the election and let ΠD(σA, σD) = 1 − ΠA(σA, σD) denote the

probability that D wins the election. An equilibrium is a profile of strategies (σA, σD) such that

ΠA(σA, σD) ≥ ΠA(σA′ , σD) for all other strategies σA′ and ΠD(σA, σD) ≥ ΠD(σA, σD′) for all other

strategies σD′ . I also let πA(xA, xD) denote the probability that A wins the election if A and D
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choose policies xA and xD respectively and let πD(xA, xD) = 1−πA(xA, xD) denote the corresponding

probability that D wins the election after these policy choices.

3. Preliminaries

The mixed strategy equilibrium in this game need not be unique, and I do not attempt to

characterize all equilibria. Instead, I seek to demonstrate that there is an equilibrium which satisfies

certain properties. In particular, I seek to show that there is a range of moderate policies with no

gaps that are optimal for the advantaged candidate. I also seek to show that there is a range of

liberal policies with no gaps and a corresponding range of conservative policies with no gaps that

are optimal actions for the disadvantaged candidate. Finally I wish to characterize the bounds on

these ranges of optimal actions. First I derive some preliminary results.

Note that the game described in the previous section is a constant sum game since the sum

of the candidates’ payoffs is always equal to 1. We thus know from von Neumann (1928) that a

strategy profile is an equilibrium if and only if each player’s strategy is a maxminimizer strategy, or

a strategy which maximizes the minimum payoff the player can guarantee himself without knowing

what strategy the opponent will use. Formally, we have the following result:

Theorem 0. (σA∗ , σD∗) is an equilibrium if and only if σA∗ and σD∗ are maxminimizer strategies.

That is, (σA∗ , σD∗) is an equilibrium if and only if σA∗ maximizes minσD ΠA(σA, σD) with respect to

σA and σD∗ maximizes minσA ΠD(σA, σD) with respect to σD. This is equivalent to σA∗ minimizing

maxσD ΠD(σA, σD) and σD∗ minimizing maxσA ΠA(σA, σD).

In the present game, a strategy is a maxminimizer strategy if and only if it is a minmaxi-

mizer strategy, or a strategy which minimizes the maximum payoff the other player can obtain.

It is also worth noting that all equilibria in this game are payoff equivalent. In any equilib-

rium, candidate A obtains payoff ΠA ≡ maxσA minσD ΠA(σA, σD) and candidate D obtains payoff

ΠD ≡ maxσD minσA ΠD(σA, σD). Furthermore, equilibrium strategies are interchangeable, and a

strategy is an equilibrium strategy if and only if it guarantees the candidate will receive at least

her equilibrium payoff. Thus (σA∗ , σD∗) is an equilibrium if and only if ΠA(σA∗ , xk) ≥ ΠA for all

xk ∈ X and ΠD(xi, σ
D∗) ≥ ΠD for all xi ∈ X.
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These results also indicate that the set of equilibria is convex. If σ′ and σ′′ are maxminimizer

strategies for candidate A, then ΠA(σ′, xk) ≥ ΠA and ΠA(σ′′, xk) ≥ ΠA for all xk ∈ X, ΠA(ασ′+(1−
α)σ′′, xk) = αΠA(σ′, xk)+(1−α)ΠA(σ′′, xk) ≥ ΠA for all α ∈ (0, 1) and xk ∈ X, and ασ′+(1−α)σ′′

is also a maxminimizer strategy for candidate A. Similarly, the set of maxminimizer strategies for

candidate D is convex, and the set of equilibria is convex.

I now derive expressions for the probabilities with which the various candidates win the election

as a function of the candidate policy choices. Suppose A chooses the policy xi and D chooses the

policy xk. Note that if k ∈ [i−a+1, i+a−1], then any voter strictly prefers candidate A regardless

of the voter’s ideal point. If k = i − a − 2j for some integer j ≥ 0 or k = i − a − 2j + 1 for some

integer j ≥ 1, then voters with ideal points no greater than i− a− j prefer candidate D and voters

with ideal points greater than i − a − j prefer candidate A. Similarly, if k = i + a + 2j for some

integer j ≥ 0 or k = i + a + 2j − 1 for some integer j ≥ 1, then voters with ideal points greater

than or equal to i + a + j prefer candidate D and voters with ideal points less than i + a + j prefer

candidate A. From this I obtain the following expression for πA(xA, xD):2

πA(xi, xk) =





n−i+a+j
n

, k = i− a− 2j, j ∈ Z∗ or k = i− a− 2j + 1, j ∈ Z+

1, k ∈ [i− a + 1, i + a− 1]

i+a+j−1
n

, k = i + a + 2j, j ∈ Z∗ or k = i + a + 2j − 1, j ∈ Z+

(1)

From this expression for πA(xA, xD), we see that there is a natural symmetry about the center

of the policy space X in the sense that πA(xi, xk) = πA(xn−i+1, xn−k+1) for all i and k. Given this

symmetry, it seems natural to expect that candidates might employ symmetric strategies in which

they select the policies xi and xn−i+1 with the same probability. Formally, I define a symmetric

strategy as follows:

Definition. A strategy σ = (σ1, . . . , σn) is symmetric if and only if σi = σn−i+1 for all i. Σ is the

set of symmetric strategies available to the candidates.

I first note that there is indeed an equilibrium in symmetric strategies:

Theorem 1. There is an equilibrium in which both candidates use symmetric strategies.

All proofs are in the appendix. In proving Theorem 1, I show that if a candidate is using

an asymmetric strategy σ = (σ1, . . . , σn), then the candidate can do at least as well by using

2Throughout this expression I let Z∗ denote the set of nonnegative integers and Z+ denote the set of positive integers.
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the symmetric strategy σ′ = (σ′1, . . . , σ
′
n) in which σ′i = σi+σn−i+1

2
for all i. In particular, if σ is a

maxminimizer strategy, then the corresponding symmetric strategy σ′ must also be a maxminimizer

strategy. This result holds as long as the distribution of the median voter’s ideal point is symmetric

about the center of the policy space.

Since there are equilibria in symmetric strategies, I focus attention on characterizing the proper-

ties of symmetric equilibria throughout the remainder of the paper. I first introduce a few definitions.

Definition. ΣA is the set of symmetric maxminimizer strategies for candidate A.

Since the set of maxminimizer strategies is equivalent to the set of strategies a candidate may use

in equilibrium, ΣA is also the set of symmetric strategies that A may use in equilibrium. We thus

know from Theorem 1 that this set of strategies is nonempty. I now introduce a particular kind of

symmetric strategy.

Definition. For any integer i satisfying 1 ≤ i ≤ n
2
, σi is the strategy in which a candidate chooses

xi with probability 1
2

and xn−i+1 with probability 1
2
. That is, σi = (σi

1, . . . , σ
i
n) is the vector of

probabilities satisfying σi
i = σi

n−i+1 = 1
2

and σi
k = 0 for all k such that k 6= i and k 6= n− i + 1.

σi is the simplest kind of symmetric strategy that a candidate may use. It involves a candidate

mixing between exactly two actions on opposite sides of the policy space X. This particular type of

symmetric strategy is useful because any other symmetric strategy can be expressed as a combina-

tion of several of these simpler symmetric strategies. In particular, if σ = (σ1, . . . , σn) is a symmetric

strategy, then σ can be written as σ =
∑n/2

i=1 2σiσ
i. This expresses the symmetric strategy σ in

terms of how much weight σ places on each of the strategies of the form σi with 1 ≤ i ≤ n
2
.

In analyzing the properties of symmetric equilibria, it is helpful to figure out how putting more or

less weight on the various strategies σi with 1 ≤ i ≤ n
2

affects candidate A’s payoff. In particular, I

consider how A’s payoff from choosing each of the strategies of the form σi varies with i in response

to a given pure strategy policy choice by D. This is done in the following lemma:

Lemma 1. Suppose D chooses an action xk with k ≤ n
2
. Then we have the following:

(a). All strategies of the form σi for any integer i satisfying k + a ≤ i ≤ n
2

afford the same

expected payoff for A against D’s action.

(b). For any positive integer i ≤ k − a + 1, A’s expected payoff from using the strategy σi is

strictly increasing in i.
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(c). For any positive integer i satisfying i ≤ k + a− 1 and i ≤ n
2
, A’s expected payoff from using

the strategy σi is nondecreasing in i.

This result guarantees that if D uses an action xk with k ≤ n
2
, then A’s payoff from using the

strategy σi is at least as large as A’s payoff from using the strategy σi−1 as long as k 6= i− a. It is

only in the case where k = i − a that A might benefit from choosing the strategy σi−1 instead of

σi. This insight also holds as long as the distribution of the median voter’s ideal point is weakly

single-peaked and symmetric about the center of the policy space.

To understand the intuition behind this result, consider what action A would like to take if D

chooses the action xk for some k ≤ n
2
. The best scenario for A would be to choose an action xi for

some i satisfying k − a + 1 ≤ i ≤ k + a − 1, as this would ensure that A wins the election with

probability 1. However, if A is not choosing an action which wins with probability 1 against D’s

choice of xk, then A would like to at least choose an action that is as close to xk as possible, as this

would maximize A’s chances of winning amongst actions that do not win with probability 1. For

example, if A chooses the policy xk+a+1, then A wins if the median voter has an ideal point greater

than or equal to xk+1, but if A chooses the policy xk+a+2, then A only wins if the median voter has

an ideal point greater than or equal to xk+2.

The fact that A benefits from choosing actions that are closer to D’s choice of action makes

the results in Lemma 1 intuitive. Suppose A uses a strategy of the form σi for some i satisfying

k + a ≤ i < n
2
, and consider what happens when A instead uses the strategy σi+1. This change

from σi to σi+1 means that A now mixes between xi+1 and xn−i instead of mixing between xi and

xn−i+1. xi+1 is further away from xk than xi, so changing from xi to xi+1 hurts A’s chances of

winning. However, xn−i is closer to xk than xn−i+1, so changing from xn−i+1 to xn−i improves A’s

chances of winning. The benefits from changing from xn−i+1 to xn−i precisely cancel out the losses

from changing from xi to xi+1, so A is indifferent between the strategies σi and σi+1. This gives the

result in part (a).

Now suppose A uses a strategy of the form σi for some i satisfying i < k − a + 1, and consider

what happens when A instead uses the strategy σi+1. In this case, xi+1 is closer to xk than xi and

xn−i is closer to xk than xn−i+1. Thus A is strictly better off mixing between xi+1 and xn−i than

mixing between xi and xn−i+1, and A strictly prefers using the strategy σi+1 to using the strategy

σi. This gives the result in part (b).
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Finally, suppose A uses a strategy of the form σi for some i satisfying k − a + 1 ≤ i < k + a− 1

and i ≤ n
2
, and consider what happens when A instead uses the strategy σi+1. In this case, xi+1

might not be closer to xk than xi, but if A chooses xi+1, then A wins with probability 1. And xn−i

is definitely closer to xk than xn−i+1. Thus A cannot lose utility either from switching to xi+1 from

xi or from switching to xn−i from xn−i+1. Thus A does at least as well by using the strategy σi+1

as by using the strategy σi, and we have the result in part (c).

I now consider how D’s payoff is affected from various changes in D’s action if A uses one of

these strategies σi for some i ≤ n
2
.

Lemma 2. Suppose A uses the strategy σi for some i ≤ n
2
. Then we have the following:

(a). For any positive integer k ≤ i−a, D’s expected payoff from choosing the action xk is strictly

increasing in k.

(b). All actions of the form xk for positive integers k satisfying i + a ≤ k ≤ n− i + 1− a afford

D the same expected payoff against A’s strategy.

(c). For any positive integer k satisfying i− a + 1 ≤ k ≤ n− i + 1− a, D’s expected payoff from

choosing the action xk is nondecreasing in k.

(d). For any positive integer k satisfying i − a + 1 ≤ k ≤ i + a − 1 and k + 2 ≤ n − i + 1 − a,

D’s expected payoff from choosing the action xk+2 is strictly greater than D’s expected payoff from

choosing the action xk.

Lemma 2 indicates that if A uses some symmetric strategy σi with i ≤ n
2

and k+1 ≤ n− i+1−a,

then D’s payoff from using the action xk+1 will be at least as high as D’s payoff from using the

action xk as long as i 6= k + a. It is only when i = k + a, that D might do better by choosing

the policy xk instead of xk+1. Similarly, D’s payoff from using an action xk+1 with k + 1 ≤ n
2

and

k + 1 ≤ n − i + 1 − a is at least as high as D’s payoff from using the action xk when i 6= k + a if

the distribution of the median voter’s ideal point is weakly single-peaked and symmetric about the

center of the policy space.

To understand the intuition behind this result, first consider what action D would like to take if

A took the action xi. D would want to avoid choosing an action xk with i− a + 1 ≤ k ≤ i + a− 1,

as D would then lose with certainty. However, D would like to choose an action as close to xi as

possible without choosing an action so close that D loses with certainty. For example, if D chooses

the action xi−a, then D wins if the median voter’s ideal point is no greater than xi−a, but if D
10



chooses the action xi−a−1, then D only wins if the median voter’s ideal point is no greater than

xi−a−1.

The fact that D would like to choose an action as close to A’s action as possible without losing

with certainty can help one understand the results in Lemma 2. If A uses the strategy σi for some

i ≤ n
2
, then A is mixing between xi and xn−i+1. Thus if D chooses an action xk with k ≤ i − a,

larger values of k mean that D chooses an action that is closer to both xi and xn−i+1, but not so

close that D would lose with certainty against either of these actions. Thus if D chooses an action

xk with k ≤ i− a, D’s expected payoff is increasing in k. This gives the result in part (a).

If D chooses an action xk with i + a ≤ k ≤ n− i + 1− a, then choosing a larger value of k means

that D chooses an action that is further from xi but closer to xn−i+1 while still being sufficiently

far from both xi and xn−i+1 that D would not lose with certainty against either of these actions.

The benefits from being closer to xn−i+1 precisely cancel out the losses from being further from xi,

so D is indifferent between all actions of this form, as indicated in part (b).

Finally, suppose D chooses an action xk with i− a+1 ≤ k ≤ i+ a− 1 and k < n− i+ 1− a, and

consider what happens when D takes the action xk+1 instead of xk. In this case, xk+1 may very well

be further from xi than xk. However, xk loses with certainty for D if A chooses xi, so xk+1 cannot

do any worse for D against xi than xk. And xk+1 is closer to xn−i+1 than xk without being so close

that D would lose with certainty if D chose the action xk+1 and A chose the action xn−i+1. Thus

xk+1 does at least as well for D as xk if A chooses either of the actions xi or xn−i+1. Furthermore,

if k + 2 ≤ n− i + 1− a, then D does strictly better by using the action xk+2 instead of xk when A

chooses the action xn−i+1, and D strictly prefers xk+2 to xk when A is using the strategy σi. This

gives the results in parts (c) and (d).

Before proceeding to the main results, I first note one additional property of A’s maxminimizer

strategies.

Lemma 3. There is an equilibrium in which A uses a symmetric strategy σ = (σ1, . . . , σn) such

that σi = 0 for all positive integers i satisfying 1 ≤ i ≤ a− 1.

The reasoning behind this lemma is as follows. As noted previously, A would like to choose an

action as close to D’s action as possible. If A chooses the action xa instead of an action of the form

xi with i ≤ a − 1, then A’s policy will be closer to D’s policy unless D chooses a policy xk with

k ≤ a− 1. However, if D chooses a policy xk with k ≤ a− 1, then A wins with certainty if A uses
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the policy xa. Thus A can only benefit from choosing the action xa instead of choosing an action

of the form xi with i ≤ a− 1, and there is no need for A to ever choose any of the actions xi with

i ≤ a− 1 with positive probability. Similarly, there is no need for A to ever choose any of the a− 1

actions closest to xn. This result also holds as long as the distribution of the median voter’s ideal

point is symmetric about the center of the policy space.

Given this result, I focus on equilibria in which A does not use the a− 1 actions closest to either

of the endpoints of the policy space for the remainder of the paper. I give one more definition to

describe this set of strategies.

Definition. Σa is the set of σ = (σ1, . . . , σn) in Σ for which σi = 0 for all positive integers i

satisfying 1 ≤ i ≤ a − 1. ΣA
a is the set of σ = (σ1, . . . , σn) in ΣA for which σi = 0 for all positive

integers i satisfying 1 ≤ i ≤ a− 1.

Thus Σa is the set of symmetric strategies in which a candidate does not use the a − 1 actions

closest to the endpoints of the policy space, and ΣA
a is the set of such strategies that A may use

in equilibrium. Since we know from Lemma 3 that ΣA
a is nonempty, I focus on characterizing the

properties of strategies in this set.

4. Main Results

This section characterizes the optimal actions for the candidates in a particular equilibrium. I

ultimately wish to show that there is a range of moderate policies with no gaps that are optimal

for the candidate with superior valence. I also wish to show that there is a range of liberal policies

with no gaps and a range of conservative policies with no gaps that are optimal for the lower quality

candidate. A range of policies with no gaps simply refers to a range of policies such that, if any two

policies are in that range, all policies in between these policies are also in that range. Formally, I

define gaps as follows.

Definition. A strategy σ = (σ1, . . . , σn) has a gap at xi if σi = 0 and there exist positive integers j

and k such that j < i < k, σj > 0, and σk > 0.

Definition. A strategy σ = (σ1, . . . , σn) has no gaps if σ does not have a gap at xi for all positive

integers i satisfying 1 ≤ i ≤ n.
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Strategies with gaps are significant because if the advantaged candidate uses a strategy with a gap,

then this gives valuable information about what actions will not be optimal for the disadvantaged

candidate. In particular, I prove the following lemma:

Lemma 4. Suppose A uses a symmetric strategy σ that has a gap at xi for some positive integer i

satisfying a + 1 ≤ i ≤ n
2
. Also suppose that σi−1 > 0 for this i. Then it is not a best response for

D to take the action xi−a.

This lemma guarantees that if A is using a symmetric strategy σ with a gap at xi but not at

xi−1 for some positive integer i satisfying a + 1 ≤ i ≤ n
2
, then xi−a is not a best response for D.

This result follows by repeatedly using the results in Lemma 2. I have indicated in my discussion of

Lemma 2 that if A is using some symmetric strategy σj with j ≤ n
2
, then the only way D might be

strictly better off by taking the action xi−a instead of xi−a+1 is if j = i. Against all other symmetric

strategies σj with j 6= i, D does at least as well by taking the action xi−a+1 instead of xi−a.

Now if A is using a symmetric strategy that has a gap at xi, then A is putting no weight on the

strategy σi. A is only using symmetric strategies σj with j 6= i. But since D is at least as well off

against all of these strategies by taking the action xi−a+1 instead of xi−a, it is intuitive that D would

not want to take the action xi−a. The technical condition that σi−1 > 0 enables me to show that

xi−a is in fact strictly suboptimal for D. This result also holds with virtually identical reasoning

as long as the distribution of the median voter’s ideal point is weakly single-peaked and symmetric

about the center of the policy space.

Lemma 4 can be used to show that there is an equilibrium in which A employs a symmetric

strategy with no gaps:

Theorem 2. There is a strategy in ΣA
a with no gaps. Furthermore, if there is a strategy σ ∈ ΣA

a

such that σj > 0 and σi = 0 for all i < j for some j ≤ n
2
, then for this j there is also a strategy

σ′ ∈ ΣA
a with no gaps such that σ′j > 0 and σ′i = 0 for all i < j.

To see that A has a maxminimizer strategy with no gaps, note that if A is using a strategy in

Σa with a gap at xi but not at xi−1 for some i ≤ n
2
, then we know from Lemma 4 that xi−a is not

a best response for D to A’s choice of strategy. Thus if A uses such a strategy, D would take an

action xk with k 6= i − a. Now I have indicated in my discussion of Lemma 1 that if D takes an

action xk with k 6= i− a, then A’s payoff from the strategy σi is at least as high as A’s payoff from
13



the strategy σi−1. This means that if A puts slightly more weight on the strategy σi and slightly

less weight on the strategy σi−1, then A does at least as well against any action which D would

consider taking against A’s original strategy. But if A makes this change, then there is no longer a

gap in A’s strategy at xi. Thus A has a symmetric maxminimizer strategy with no gaps.

The second part of the theorem simply shows that A can still use the most extreme policy that

may be optimal when A is restricted to employing a strategy with no gaps. Again Theorem 2 holds

with virtually identical reasoning as long as the distribution of the median voter’s ideal point is

weakly single-peaked and symmetric about the center of the policy space.

The fact that A has a symmetric maxminimizer strategy with no gaps enables one to show that

in every equilibrium, there is a range of actions with no gaps around the center of the policy space

which must be best responses for A to D’s strategy. This is illustrated in Theorem 3.

Theorem 3. Let j be the smallest positive integer such that there is some σ ∈ ΣA
a with σj > 0.

Then in every equilibrium (σA, σD), all actions of the form xi with j ≤ i ≤ n− j + 1 must be best

responses for A to D’s strategy.

This result is an immediate consequence of Theorem 2. If j is defined as above, then we know

from Theorem 2 that there is a symmetric maxminimizer strategy with no gaps for A, σA′ , such

that σA′
j > 0. Also, if (σA, σD) is an equilibrium, then σD is a maxminimizer strategy for D. And

since σA′ and σD are both maxminimizer strategies, (σA′ , σD) must be an equilibrium. But σA′

takes all actions of the form xi with j ≤ i ≤ n−j +1 with positive probability. Since (σA′ , σD) is an

equilibrium, these actions must all be best responses for A to D’s strategy, and the result follows.

While I am focusing on symmetric equilibria in this paper, it is worth noting that this result also

holds for every equilibrium in which some player does not use a symmetric strategy. And Theorem

3 also holds with identical reasoning as long as the distribution of the median voter’s ideal point is

weakly single-peaked and symmetric about the center of the policy space.

Though there will typically be gaps in D’s strategy near the center of the policy space, I illustrate

in the next two theorems that there is an equilibrium in which D has a range of actions with no

gaps that are all best responses to A’s strategy. This range of actions corresponds to some set of

policies that are at least as liberal as xn/2−a. First I prove the following:
14



Theorem 4. Suppose there is a strategy in ΣA
a such that one of D’s best responses to this strategy

is xj for some j < n
2
− a. Then there is also a strategy in ΣA

a such that all actions of the form xk

with j ≤ k ≤ n
2
− a are best responses for D.

This theorem does not guarantee that there will be an equilibrium in which D takes all the

actions xk in the range j ≤ k ≤ n
2
− a with positive probability, as D need not choose to take all

optimal actions with positive probability in equilibrium. However, it does ensure that these actions

will all be optimal for D in equilibrium. The symmetry of the problem then guarantees that all

conservative policies of the form xk with n
2

+ a + 1 ≤ k ≤ n− j + 1 are also best responses for D.

The reasoning behind Theorem 4 is similar to the reasoning behind Theorem 2. Suppose A is

using a symmetric strategy such that xi−a is not a best response for D for some i ≤ n
2

but xi−a−1 is

a best response for D. Similar reasoning to that in Lemma 4 shows that if this holds, then A must

be putting positive weight on the strategy σi−1.

Since A is putting positive weight on the strategy σi−1, A can put slightly more weight on the

strategy σi and slightly less weight on the strategy σi−1. As noted in the reasoning behind Theorem

2, such a change is favorable to A if D is using actions of the form xk with k 6= i − a. Thus A

prefers to keep putting more weight on the strategy σi and less weight on the strategy σi−1 until

xi−a is also a best response for D. This gives the result in Theorem 4.

While Theorem 4 illustrates that there is an equilibrium in which all actions of the form xk with

j ≤ k ≤ n
2
− a are best responses for D if there is an equilibrium in which xj is a best response for

D, it does not guarantee that there is an equilibrium in which xj is a best response for D for some

j ≤ n
2
− a. For instance, this theorem leaves open the possibility that all of D’s best responses will

be near the center of the policy space and be of the form xk with n
2
− a + 1 ≤ k ≤ n

2
+ a. This

possibility is ruled out in Theorem 5.

Theorem 5. If σ ∈ ΣA
a , then one of D’s best responses to σ is to choose an action of the form xk

for some positive integer k ≤ n
2
− a.

To understand the intuition behind this result, suppose A were using a symmetric strategy, but

D did not have a best response of the form xk for some positive integer k ≤ n
2
− a. Since A is using

a symmetric strategy, D’s expected payoff from using the action xk is the same as D’s expected

payoff from using the action xn−k+1, and D also does not have a best response of the form xk with
15



k ≥ n
2

+ a + 1. This means all of D’s best responses are of the form xk for some k satisfying

n
2
− a + 1 ≤ k ≤ n

2
+ a, the policies closest to the center of the policy space.

But if D is using an action of this form, then A can improve his payoff by putting relatively

more weight on the strategy σn/2 and putting relatively less weight on the other strategies σi for

i < n
2

that A was using before. The strategy σn/2 which mixes between xn/2 and xn/2+1 wins with

probability one if D is using an action of the form xk with n
2
− a + 2 ≤ k ≤ n

2
+ a − 1. And if D

is using the actions xn/2−a+1 or xn/2+a, then one of the actions xn/2 or xn/2+1 will with probability

one, and the other action will be as close to D’s action as possible without being close enough to

win with certainty.

No other symmetric strategy σi is more effective for A when D is using actions of the form xk

with n
2
−a+1 ≤ k ≤ n

2
+a than σn/2, so this means that A can improve his or her payoff by putting

relatively more weight on the strategy σn/2 and relatively less weight on the other strategies. Thus

if A is using a symmetric maxminimizer strategy, one of D’s best responses must be of the form xk

with k ≤ n
2
− a.

While the results for the advantaged candidate in Theorems 2 and 3 hold for any distribution of

the median voter’s ideal point that is weakly single-peaked and symmetric about the center of the

policy space, the results for the disadvantaged candidate in Theorems 4 and 5 will not necessarily

hold under this more general treatment. Thus the assumption that the distribution of the median

voter’s ideal point is uniform is useful in deriving properties of the disadvantaged candidate’s optimal

actions.

By combining Theorems 1-5, I obtain the following result:

Theorem 6. There is an equilibrium (σA, σD) in symmetric strategies characterized by two positive

integers kA and kD satisfying kD ≤ n
2
− a and a ≤ kA ≤ n

2
such that the following hold:

(a). All actions of the form xi with kA ≤ i ≤ n− kA + 1 are best responses for A to D’s strategy.

(b). σA
i = 0 if i < kA or i > n− kA + 1.

(c). All actions of the form xk with kD ≤ k ≤ n
2
− a and n

2
+ a + 1 ≤ k ≤ n − kD + 1 are best

responses for D to A’s strategy.

(d). No actions of the form xk with k < kD or k > n − kD + 1 are best responses for D to A’s

strategy.

(e). kD + a− 2 ≤ kA ≤ kD + a.
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Parts (a)-(d) of this theorem are immediate consequences of Theorems 1-5. These results indicate

that there is a range of moderate policies with no gaps that are optimal for the advantaged candidate.

There is also a range of liberal policies with no gaps and a corresponding range of conservative

policies with no gaps that are optimal actions for the disadvantaged candidate.

The only part of this theorem that is significantly different from the previous results is part (e).

This result indicates that there are predictable bounds on the range of optimal actions for both

players in equilibrium. In particular, the lower bound on the range of optimal actions for A is

approximately a grid points closer to the center than the lower bound on the range of optimal

actions for D.

This result makes sense given the incentives faced by the players. D wishes to choose an action

as close to A’s action as possible without choosing an action so close that D loses with certainty.

Now the only actions A takes with positive probability are of the form xi with i ≥ kA. Thus no

action of the form xk with k < kA − a is ever a best response for D to A’s strategy, as D could

instead take the action xkA
which is closer to all actions A takes with positive probability without

being so close that D would every lose with certainty against any of these actions. From this it

follows that kD ≥ kA − a or kA ≤ kD + a. Similar reasoning gives the bound kD + a− 2 ≤ kA.

Now I address how many policies the candidates must randomize amongst in the limit of an

arbitrarily fine policy space for a fixed size of the advantaged candidate’s advantage, δ. Since

the advantaged candidate randomizes amongst the most moderate policies in the policy space, in

order to determine how many policies the advantaged candidate uses, it suffices to find the most

extreme policies that the advantaged candidate chooses in equilibrium. Such a policy is given by

the following definition.

Definition. x(n, δ) is the most liberal policy that A must choose in equilibrium for given values of

n and δ. Formally, x(n, δ) ≡ min{xi ∈ X|σ ∈ ΣA ⇒ ∃ k ≤ i for which σk > 0}.

In this definition, ΣA, the set of symmetric maxminimizer strategies for candidate A, is implicitly

a function of n and δ. I now note how the most liberal policy that A must choose in equilibrium

varies with δ as the number of policies in the policy space becomes large. Throughout I restrict

attention to values of n for which n is even and δ is not an integral multiple of 1
n−1

.

Theorem 7. lim supn→∞ x(n, δ) ≤ max{1+δ
3

, 1
2
− δ}.
17



Thus in the limit of an arbitrarily fine policy space, the advantaged candidate must use policies

that are at least as liberal as max{1+δ
3

, 1
2
−δ}, and the advantaged candidate uses the policies in the

interval [max{1+δ
3

, 1
2
− δ}, min{2−δ

3
, 1

2
+ δ}]. The advantaged candidate thus randomizes amongst

a non-vanishing fraction of the policies in the policy space as the number of policies in the policy

space becomes large. Similarly, the disadvantaged candidate will also randomize amongst a non-

vanishing fraction of the policies in the policy space in order to create incentives for the advantaged

candidate to do the same. The candidates will also randomize amongst a non-vanishing fraction

of the policies in the policy space for any symmetric and weakly single-peaked distribution of the

median voter’s ideal point, though the precise number of policies that the candidates use may

depend on the distribution.

To understand the intuition behind why the advantaged candidate cannot randomize amongst

an infinitesimal fraction of the policies in the policy space, suppose instead that the advantaged

candidate only randomized amongst policies arbitrarily close to 1
2
. In that case, any best response

for the disadvantaged candidate would be to choose policies extremely close to either 1
2
− δ or

1
2

+ δ, while still choosing policies that would win with positive probability against the advantaged

candidate’s policies.

When the disadvantaged candidate is using such a narrow range of policies, the advantaged can-

didate can exploit this by choosing policies that would win with certainty against the disadvantaged

candidate’s policy choices. In particular, the advantaged candidate can choose a policy relatively

closer to 1
2
− δ that would win with probability 1 against all liberal actions the disadvantaged

candidate chooses with positive probability, while still only winning slightly less often against the

conservative actions the disadvantaged candidate chooses with positive probability.

Since this change would afford the advantaged candidate a higher payoff than choosing policies

arbitrarily close to 1
2
, there is no equilibrium in which the advantaged candidate only chooses policies

arbitrarily close to 1
2
. Similar reasoning explains why the advantaged candidate uses policies as

liberal as max{1+δ
3

, 1
2
− δ} in the limit of an arbitrarily large policy space.

Finally, I give a useful lower bound on the probability the advantaged candidate wins the election.

Theorem 8. The probability the advantaged candidate wins the election is at least 1
2

+ a
n
.
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This result follows by noting that the advantaged candidate can guarantee that he or she will

win with probability 1
2
+ a

n
by using the strategy σn/2. Because of this, any maxminimizer strategy

for the advantaged candidate will win the election with at least probability 1
2

+ a
n
.

This bound will also hold for any symmetric and weakly single-peaked distribution of the median

voter’s ideal point. In fact, for these more general distributions of the median voter’s ideal point,

one can typically prove a stronger lower bound on the probability with which the advantaged

candidate wins the election. For these more general distributions, there will typically be a higher

probability that the median voter’s ideal point is near the center of the policy space. Since the

advantaged candidate wins when the median voter’s ideal point is near the center of the policy

space, the advantaged candidate will typically win with greater probability for these more general

distributions of the median voter’s ideal point.

5. Conclusion

This paper has characterized the optimal actions for candidates in a particular mixed strategy

equilibrium that may arise in a Downsian model in which one candidate is endowed with some

valence advantage that is so large that voters might prefer this candidate even if they prefer the

other candidate’s policy positions. In this equilibrium, there is a range of moderate policies with no

gaps that are optimal actions for the advantaged candidate, but all other policies are not optimal

for this candidate. There is also a range of liberal policies with no gaps and a corresponding range

of conservative policies with no gaps that are optimal actions for the disadvantaged candidate. The

most moderate policy guaranteed to be an optimal action for the disadvantaged candidate, xn/2−a,

becomes less moderate as the size of the advantaged candidate’s advantage increases. And the most

extreme policy that is optimal for the advantaged candidate, xkA
, is more moderate than the most

extreme policy that is optimal for the disadvantaged candidate, xkD
, by an amount approximately

proportional to the size of the advantaged candidate’s advantage.

It is worth noting that the results when a candidate has a large valence advantage can differ

significantly from the results in Aragones and Palfrey (2002) when a candidate has a minimal

valence advantage. When the size of a candidate’s valence advantage is minimal, both candidates

randomize amongst virtually identical sets of policies. By contrast, if the advantaged candidate

has a large valence advantage, then there need not be any overlap between the optimal actions for
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the advantaged candidate and the optimal actions for the disadvantaged candidate. Furthermore,

in Aragones and Palfrey (2002), when the number of points in the policy space becomes large,

both candidates only use policies arbitrarily close to 1
2
, and the advantaged candidate wins with

probability arbitrarily close to 1
2
. By contrast, Theorems 7 and 8 in the present paper indicate that

when a candidate’s valence advantage δ is bounded away from zero (and thus a
n

is bounded away

from zero for all n), then the advantaged candidate uses policies bounded away from 1
2
, and the

advantaged candidate wins with probability bounded away from 1
2
.

While this paper has characterized the optimal actions for the candidates in equilibrium, this

paper has not calculated the precise mixed strategies that are used in this equilibrium. However,

characterizing the optimal actions is an important part of a full equilibrium characterization, as this

gives useful information about what actions the candidates will choose with positive probability in

equilibrium. Furthermore, knowing that the optimal actions are of the form in Theorem 6 gives a

useful way to calculate the mixing probabilities that the candidates would use in equilibrium. For

example, to find an equilibrium strategy for the advantaged candidate, one only need find mixing

probabilities such that the disadvantaged candidate is indifferent between adjacent policies in a

range of policies of the form in Theorem 6(c). As Aragones and Palfrey (2002) illustrate how to

ensure that candidates are indifferent between adjacent policies, one can use similar techniques to

derive the advantaged candidate’s mixing probabilities here.

The results in my paper indicate that the disadvantaged candidate will randomize between choos-

ing a range of policies that are relatively liberal and a range of policies that are relatively conser-

vative. This result might seem like a poor theoretical prediction since one would not expect many

candidates to randomize between choosing a liberal policy and a conservative policy. However, there

are very natural empirical referents for this result. One standard interpretation of a mixed strategy

is that the other players face uncertainty about what actions the player using the mixed strategy

will take and the mixing probabilities reflect the probabilities with which the other players believe

this player will take the various actions (Harsanyi, 1973; Rubinstein, 1991).

This interpretation is well-suited to one of the most natural applications of the model. One of

the most common situations in which a candidate has a valence advantage is when an incumbent

politician runs against challenger and the incumbent has an incumbency advantage. In this case,

if the challenger has not previously run for public office and not publicly stated his or her general
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policy leanings, the incumbent may not be at all sure as to whether the challenger will choose a

liberal policy or a conservative policy. The incumbent may then very well believe there is a chance

the challenger will choose a liberal policy and a chance the challenger will choose a conservative

policy. Thus the mixed strategy for the disadvantaged candidate corresponds very naturally to

beliefs an incumbent may have about a challenger’s likely policy selection.

Another natural application of the results is for party primaries. In a Democratic party primary,

a candidate running for office for the first time might not particularly care whether he or she runs as

a liberal Democrat or a conservative Democrat as long as he or she runs as a Democrat. However,

the candidate may feel a need to choose a different policy than an incumbent that is running as

a moderate Democrat. The mixed strategies in this paper for the disadvantaged candidate may

then correspond naturally to the mixed strategies a disadvantaged candidate would use in a party

primary.

It is also worth noting that the equilibrium characterization given here predicts that the optimal

actions for the advantaged candidate are more moderate than the optimal actions for the disadvan-

taged candidate. Moreover, the most moderate policy that is guaranteed to be an optimal action

for the disadvantaged candidate, xn/2−a, is relatively further from the center of the policy space for

larger sizes of the advantaged candidate’s advantage. These results correspond well to empirical

evidence. For example, Ansolabehere et al. (2001), Fiorina (1973), and Stone and Simas (2007)

conduct empirical studies on how the size of a candidate’s incumbency advantage affects whether

candidates choose relatively moderate or extreme policies. These authors note that candidates tend

to assume more moderate policies as the size of their valence advantages increase and tend to choose

more extreme policies when they face relatively larger disadvantages. The predictions of the model

are thus supported by these empirical studies.
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Appendix

Theorem 1. There is an equilibrium in which both candidates use symmetric strategies.
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Proof. Since this game is finite strategic game, we know from Proposition 33.1 of Osborne and

Rubinstein (1994) that there exists an equilibrium in mixed strategies. Let (σA, σD) be some such

equilibrium, and consider the strategy σA′ defined by setting σA′
i = σA

n−i+1 for all i. By the symmetry

of the players’ payoff functions, we know that ΠA(σA, xk) = ΠA(σA′ , xn−k+1) for all k. Thus since

ΠA(σA, xk) ≥ ΠA for all k, we have ΠA(σA′ , xk) ≥ ΠA for all k as well. So the fact that σA is a

maxminimizer strategy implies σA′ is a maxminimizer strategy.

Now consider the strategy σA′′ defined by σA′′ = 1
2
(σA + σA′). Since the set of maxminimizer

strategies for A is convex, σA′′ is also a maxminimizer strategy for A. And σA′′ is a symmetric

strategy because σA′′
i = 1

2
(σA

i + σA′
i ) = 1

2
(σA′

n−i+1 + σA
n−i+1) = σA′′

n−i+1. From this it follows that σA′′

is a symmetric maxminimizer strategy.

A virtually identical argument shows that if σD′ is defined by setting σD′
i = σD

n−i+1 for all i and

σD′′ = 1
2
(σD + σD′), then σD′′ is a symmetric maxminimizer strategy for D. But this means that

(σA′′ , σD′′) is an equilibrium in which both candidates use symmetric strategies. The result follows.

¤

Lemma 1. Suppose D chooses an action xk with k ≤ n
2
. Then we have the following:

(a). All strategies of the form σi for any integer i satisfying k + a ≤ i ≤ n
2

afford the same

expected payoff for A against D’s action.

(b). For any positive integer i ≤ k − a + 1, A’s expected payoff from using the strategy σi is

strictly increasing in i.

(c). For any positive integer i satisfying i ≤ k + a− 1 and i ≤ n
2
, A’s expected payoff from using

the strategy σi is nondecreasing in i.

Proof. (a). To prove this it suffices to show that ΠA(σi, xk) = ΠA(σi+1, xk) for all integers i sat-

isfying k + a ≤ i < n
2
. Note that ΠA(σi, xk) = 1

2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σi, xk) =

ΠA(σi+1, xk) holds if and only if 1
2
(πA(xi, xk) + πA(xn−i+1, xk)) = 1

2
(πA(xi+1, xk) + πA(xn−i, xk)) or

πA(xi, xk)− πA(xi+1, xk) = πA(xn−i, xk)− πA(xn−i+1, xk). It thus suffices to show that πA(xi, xk)−
πA(xi+1, xk) = πA(xn−i, xk) − πA(xn−i+1, xk) for all integers i satisfying k + a ≤ i < n

2
. I consider

two cases:

Case 1: Suppose k = i − a − 2j + 1 for some positive integer j. In this case, we know from

equation (1) that πA(xi, xk) = n−i+a+j
n

and πA(xi+1, xk) = n−(i+1)+a+j
n

for this integer j. Thus

πA(xi, xk)− πA(xi+1, xk) = 1
n
. Also, k ≡ n− i− a + 1 (mod 2) and k = n− i− a− 2j′ + 1 for some
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positive integer j′. But if this holds, then we know from equation (1) that πA(xn−i, xk) = n−(n−i)+a+j′
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+j′
n

for this integer j′. Thus πA(xn−i, xk) − πA(xn−i+1, xk) = 1
n

as

well and πA(xi, xk)− πA(xi+1, xk) = πA(xn−i, xk)− πA(xn−i+1, xk).

Case 2: Suppose k = i− a− 2j + 1 does not hold for any positive integer j. In this case, we have

k = i−a−2j for some nonnegative integer j and k = (i+1)−a−2(j+1)+1 for this same integer j. We

then know from equation (1) that πA(xi, xk) = n−i+a+j
n

and πA(xi+1, xk) = n−(i+1)+a+(j+1)
n

= n−i+a+j
n

for this integer j. Thus πA(xi, xk)− πA(xi+1, xk) = 0.

Since k = i− a− 2j for some nonnegative integer j, k ≡ n− i− a (mod 2), k = n− i− a− 2j′ for

some nonnegative integer j′, and k = n− i + 1− a− 2(j′ + 1) + 1 for this same integer j′. We then

know from equation (1) that πA(xn−i, xk) = n−(n−i)+a+j′
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+(j′+1)
n

=

n−(n−i)+a+j′
n

for this integer j′. Thus πA(xn−i, xk) − πA(xn−i+1, xk) = 0 as well. In either case, we

have πA(xi, xk)− πA(xi+1, xk) = πA(xn−i, xk)− πA(xn−i+1, xk), and the result holds.

(b). To prove this result it suffices to show that ΠA(σi+1, xk) − ΠA(σi, xk) > 0 for all posi-

tive integers i satisfying 1 ≤ i < k − a + 1. Now ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)).

Thus ΠA(σi+1, xk)−ΠA(σi, xk) = 1
2
(πA(xi+1, xk) + πA(xn−i, xk))− 1

2
(πA(xi, xk) + πA(xn−i+1, xk)) =

1
2
(πA(xi+1, xk) − πA(xi, xk)) + 1

2
(πA(xn−i, xk) − πA(xn−i+1, xk)). To prove the result it thus suf-

fices to show that either πA(xi+1, xk) − πA(xi, xk) > 0 and πA(xn−i, xk) − πA(xn−i+1, xk) = 0 or

πA(xi+1, xk)− πA(xi, xk) = 0 and πA(xn−i, xk)− πA(xn−i+1, xk) > 0 for all positive integers i satis-

fying 1 ≤ i < k − a + 1. I consider two cases:

Case 1: Suppose k = i + a + 2j − 1 for some positive integer j. Then k = i + 1 + a + 2(j − 1)

for the same integer j and we know from equation (1) that πA(xi, xk) = i+a+j−1
n

and πA(xi+1, xk) =

i+1+a+(j−1)−1
n

for this integer j. Thus πA(xi+1, xk) − πA(xi, xk) = 0. Also, k ≡ n − i + 1 − a (mod

2), and k = n − i + 1 − a − 2j′ for some positive integer j′. But if this holds, then we know from

equation (1) that πA(xn−i+1, xk) = n−(n−i+1)+a+j′
n

and πA(xn−i, xk) = n−(n−i)+a+j′
n

for this integer j′.

Thus πA(xn−i, xk) − πA(xn−i+1, xk+1) = 1
n
. From this it follows that πA(xi+1, xk) − πA(xi, xk) = 0

and πA(xn−i, xk)− πA(xn−i+1, xk) > 0 holds in this case.

Case 2: Suppose k = i + a + 2j − 1 does not hold for any positive integer j. In this case,

we have k = i + a + 2j for some nonnegative integer j and k = i + 1 + a + 2j − 1 for this

same integer j. Thus we know from equation (1) that πA(xi, xk) = i+a+j−1
n

. Also, if j > 0, then
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πA(xi+1, xk) = i+1+a+j−1
n

for this integer j, and if j = 0, then πA(xi+1, xk) = 1. In either case, it

follows that πA(xi+1, xk)− πA(xi, xk) > 0.

Since k = i + a + 2j for some nonnegative integer j, k ≡ n− i− a (mod 2), k = n− i− a− 2j′

for some nonnegative integer j′, and k = n− i + 1− a− 2(j′ + 1) + 1 for this same integer j′. Thus

we know from equation (1) that πA(xn−i, xk) = n−(n−i)+a+j′
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+(j′+1)
n

for this integer j′, meaning πA(xn−i, xk) − πA(xn−i+1, xk) = 0. Combining this with the results

from Case 1 shows that either πA(xi+1, xk) − πA(xi, xk) > 0 and πA(xn−i, xk) − πA(xn−i+1, xk) = 0

or πA(xi+1, xk) − πA(xi, xk) = 0 and πA(xn−i, xk) − πA(xn−i+1, xk) > 0 for all positive integers i

satisfying 1 ≤ i < k − a + 1. The result follows.

(c). We know from part (b) that A’s expected payoff from using the strategy σi is nondecreasing

in i for all positive integers i ≤ k − a + 1. Thus to prove the result it suffices to show that if i is a

positive integer satisfying k − a + 1 ≤ i < k + a− 1 and i < n
2
, then ΠA(σi+1, xk) ≥ ΠA(σi, xk).

Now ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σi+1, xk) ≥ ΠA(σi, xk) holds if and

only if 1
2
(πA(xi+1, xk)+πA(xn−i, xk)) ≥ 1

2
(πA(xi, xk)+πA(xn−i+1, xk)) or πA(xi+1, xk)−πA(xi, xk) ≥

πA(xn−i+1, xk) − πA(xn−i, xk). It thus suffices to show that πA(xi+1, xk) − πA(xi, xk) ≥ 0 ≥
πA(xn−i+1, xk)−πA(xn−i, xk) for all positive integers i satisfying k−a+1 ≤ i < k+a−1 and i < n

2
.

Now if k − a + 1 ≤ i < k + a − 1, then k − a + 1 ≤ i + 1 ≤ k + a − 1, i + 1 − a + 1 ≤ k ≤
i + 1 + a− 1, and we know from equation (1) that πA(xi+1, xk) = 1. Thus πA(xi+1, xk) ≥ πA(xi, xk)

and πA(xi+1, xk)− πA(xi, xk) ≥ 0. It thus suffices to show that πA(xn−i+1, xk)− πA(xn−i, xk) ≤ 0 if

i < n
2
. I consider several cases:

Case 1: Suppose k ≥ n− i−a+1. In this case, we know from equation (1) that πA(xn−i, xk) = 1

and πA(xn−i+1, xk) ≤ πA(xn−i, xk). Thus πA(xn−i+1, xk)− πA(xn−i, xk) ≤ 0.

Case 2: Suppose k = n− i− a− 2j + 1 for some positive integer j. Then we know from equation

(1) that πA(xn−i, xk) = n−(n−i)+a+j
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+j
n

for this integer j. Thus

πA(xn−i+1, xk)− πA(xn−i, xk) = − 1
n
≤ 0.

Case 3: Suppose neither of the first two cases hold. Then k = n− i−a−2j for some nonnegative

integer j, and k = n−i+1−a−2(j+1)+1 for this same integer j. Then we know from equation (1)

that πA(xn−i, xk) = n−(n−i)+a+j
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+j+1
n

= n−(n−i)+a+j
n

for this integer

j. Thus πA(xn−i+1, xk) = πA(xn−i, xk), and we always have πA(xn−i+1, xk)− πA(xn−i, xk) ≤ 0. The

result then follows.
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¤

Lemma 2. Suppose A uses the strategy σi for some i ≤ n
2
. Then we have the following:

(a). For any positive integer k ≤ i−a, D’s expected payoff from choosing the action xk is strictly

increasing in k.

(b). All actions of the form xk for positive integers k satisfying i + a ≤ k ≤ n− i + 1− a afford

D the same expected payoff against A’s strategy.

(c). For any positive integer k satisfying i− a + 1 ≤ k ≤ n− i + 1− a, D’s expected payoff from

choosing the action xk is nondecreasing in k.

(d). For any positive integer k satisfying i − a + 1 ≤ k ≤ i + a − 1 and k + 2 ≤ n − i + 1 − a,

D’s expected payoff from choosing the action xk+2 is strictly greater than D’s expected payoff from

choosing the action xk.

Proof. (a). To prove this it suffices to show that for all integers k satisfying 1 < k ≤ i − a, we

have ΠD(σi, xk)− ΠD(σi, xk−1) = ΠA(σi, xk−1)− ΠA(σi, xk) > 0. Now ΠA(σi, xk) = 1
2
(πA(xi, xk) +

πA(xn−i+1, xk)). Thus ΠA(σi, xk−1)−ΠA(σi, xk) = 1
2
(πA(xi, xk−1) + πA(xn−i+1, xk−1)− πA(xi, xk)−

πA(xn−i+1, xk)) = 1
2
[(πA(xi, xk−1)−πA(xi, xk))+(πA(xn−i+1, xk−1)−πA(xn−i+1, xk))]. It thus suffices

to show that either πA(xi, xk−1) − πA(xi, xk) > 0 and πA(xn−i+1, xk−1) − πA(xn−i+1, xk) = 0 or

πA(xi, xk−1)− πA(xi, xk) = 0 and πA(xn−i+1, xk−1)− πA(xn−i+1, xk) > 0 for all integers k satisfying

1 < k ≤ i− a. I consider two cases:

Case 1: Suppose k = i− a− 2j + 1 for some positive integer j. Then k − 1 = i− a− 2j for the

same integer j and we know from equation (1) that πA(xi, xk) = πA(xi, xk−1) = n−i+a+j
n

for this

integer j. Thus πA(xi, xk−1)−πA(xi, xk) = 0. Also, k ≡ n− i+1−a (mod 2), k = n− i+1−a−2j′

for some positive integer j′, and k − 1 = n− i + 1− a− 2(j′ + 1) + 1 for the same positive integer

j′. But if this holds, then we know from equation (1) that πA(xn−i+1, xk) = n−(n−i+1)+a+j′
n

and

πA(xn−i+1, xk−1) = n−(n−i+1)+a+(j′+1)
n

for this integer j′. Thus πA(xn−i+1, xk−1)−πA(xn−i+1, xk) = 1
n
.

So in this case πA(xi, xk−1)− πA(xi, xk) = 0 and πA(xn−i+1, xk−1)− πA(xn−i+1, xk) > 0.

Case 2: Suppose k = i− a− 2j + 1 does not hold for any positive integer j. In this case, we have

k = i− a− 2j for some nonnegative integer j and k− 1 = i− a− 2(j + 1) + 1 for this same integer

j. Thus we know from equation (1) that πA(xi, xk) = n−i+a+j
n

and πA(xi, xk−1) = n−i+a+(j+1)
n

for

this integer j. From this it follows that πA(xi, xk−1)− πA(xi, xk) = 1
n
.

25



Since k = i−a−2j for some nonnegative integer j, k ≡ n−i−a (mod 2), k = n−i+1−a−2j′+1

for some nonnegative integer j′, and k−1 = n−i+1−a−2j′ for this same integer j′. Thus we know

from equation (1) that πA(xn−i+1, xk) = πA(xn−i+1, xk−1) = n−(n−i+1)+a+j′
n

for this integer j′ and

πA(xn−i+1, xk−1)−πA(xn−i+1, xk) = 0. Combining this with the results from Case 1 shows that either

πA(xi, xk−1)−πA(xi, xk) = 0 and πA(xn−i+1, xk−1)−πA(xn−i+1, xk) > 0 or πA(xi, xk−1)−πA(xi, xk) >

0 and πA(xn−i+1, xk−1)− πA(xn−i+1, xk) = 0. The result then follows.

(b). To prove this it suffices to show that if k is a positive integer satisfying i + a ≤ k and

k+1 ≤ n−i+1−a, then ΠA(σi, xk) = ΠA(σi, xk+1). Now ΠA(σi, xk) = 1
2
(πA(xi, xk)+πA(xn−i+1, xk)).

Thus ΠA(σi, xk) = ΠA(σi, xk+1) holds if and only if 1
2
(πA(xi, xk)+πA(xn−i+1, xk)) = 1

2
(πA(xi, xk+1)+

πA(xn−i+1, xk+1)) or πA(xi, xk+1) − πA(xi, xk) = πA(xn−i+1, xk) − πA(xn−i+1, xk+1). It thus suffices

to show that πA(xi, xk+1) − πA(xi, xk) = πA(xn−i+1, xk) − πA(xn−i+1, xk+1) for all positive integers

k satisfying i + a ≤ k and k + 1 ≤ n− i + 1− a. I consider two cases:

Case 1: Suppose k = i + a + 2j − 1 for some positive integer j. Then k + 1 = i + a + 2j for

the same integer j and we know from equation (1) that πA(xi, xk+1) = πA(xi, xk) = i+a+j−1
n

for this

integer j. Thus πA(xi, xk+1)−πA(xi, xk) = 0. Also, k ≡ n− i+1−a (mod 2), k = n− i+1−a−2j′

for some positive integer j′, and k+1 = n− i+1−a−2j′+1 for the same positive integer j′. But if

this holds, then we know from equation (1) that πA(xn−i+1, xk) = πA(xn−i+1, xk+1) = n−(n−i+1)+a+j′
n

for this integer j′. Thus πA(xn−i+1, xk) − πA(xn−i+1, xk+1) = 0 and πA(xi, xk+1) − πA(xi, xk) =

πA(xn−i+1, xk)− πA(xn−i+1, xk+1) holds in this case.

Case 2: Suppose k = i + a + 2j− 1 does not hold for any positive integer j. In this case, we have

k = i+a+2j for some nonnegative integer j and k +1 = i+a+2(j +1)−1 for this same integer j.

Thus we know from equation (1) that πA(xi, xk) = i+a+j−1
n

and πA(xi, xk+1) = i+a+(j+1)−1
n

for this

integer j. From this it follows that πA(xi, xk+1)− πA(xi, xk) = 1
n
.

Since k = i+a+2j for some nonnegative integer j, k ≡ n−i−a (mod 2), k = n−i+1−a−2j′+1 for

some positive integer j′, and k+1 = n−i+1−a−2(j′−1) for this same integer j′. Thus we know from

equation (1) that πA(xn−i+1, xk) = n−(n−i+1)+a+j′
n

and πA(xn−i+1, xk+1) = n−(n−i+1)+a+(j′−1)
n

for this

integer j′. From this it follows that πA(xn−i+1, xk)−πA(xn−i+1, xk+1) = 1
n

= πA(xi, xk+1)−πA(xi, xk).

Combining this with the results from Case 1 shows that πA(xi, xk+1)−πA(xi, xk) = πA(xn−i+1, xk)−
πA(xn−i+1, xk+1) for all positive integers k satisfying i+ a ≤ k and k + 1 ≤ n− i+ 1− a. The result

then follows.
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(c). First note from part (b) that D’s expected payoff from choosing the action xk is constant in

k for any k in the range i+a ≤ k ≤ n− i+1−a. Thus the result holds for all positive integers k in

the range i + a ≤ k ≤ n− i + 1− a. So to prove the result, it suffices to show that if k is a positive

integer satisfying i−a+1 ≤ k ≤ i+a−1 and k +1 ≤ n− i+1−a, then ΠD(σi, xk+1) ≥ ΠD(σi, xk)

or ΠA(σi, xk) ≥ ΠA(σi, xk+1).

Note that ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σi, xk) ≥ ΠA(σi, xk+1) holds

if and only if 1
2
(πA(xi, xk) + πA(xn−i+1, xk)) ≥ 1

2
(πA(xi, xk+1) + πA(xn−i+1, xk+1)) or πA(xi, xk) −

πA(xi, xk+1) ≥ πA(xn−i+1, xk+1)−πA(xn−i+1, xk). It thus suffices to show that πA(xi, xk)−πA(xi, xk+1) ≥
0 ≥ πA(xn−i+1, xk+1) − πA(xn−i+1, xk) for all integers k satisfying i − a + 1 ≤ k ≤ i + a − 1 and

k + 1 ≤ n− i + 1− a.

Note that if k satisfies i−a+1 ≤ k ≤ i+a−1, then we know from equation (1) that πA(xi, xk) = 1.

From this it follows that if k satisfies i− a + 1 ≤ k ≤ i + a− 1, then πA(xi, xk) ≥ πA(xi, xk+1) and

πA(xi, xk)− πA(xi, xk+1) ≥ 0.

Now I show that πA(xn−i+1, xk+1) − πA(xn−i+1, xk) ≤ 0 if k + 1 ≤ n − i + 1 − a. I consider two

cases:

Case 1: Suppose k + 1 = n− i + 1− a− 2j + 1 for some positive integer j. In this case, we have

k = n− i+1−a−2j for this same integer j and we know from equation (1) that πA(xn−i+1, xk+1) =

πA(xn−i+1, xk) = n−(n−i+1)+a+j
n

for this integer j. Thus πA(xn−i+1, xk+1)− πA(xn−i+1, xk) ≤ 0 holds

in this case.

Case 2: Suppose k+1 = n−i+1−a−2j+1 does not hold for any positive integer j. In this case,

we have k +1 = n− i+1−a−2j for some nonnegative integer j and k = n− i+1−a−2(j +1)+1

for this same integer j. Thus we know from equation (1) that πA(xn−i+1, xk+1) = n−(n−i+1)+a+j
n

and

πA(xn−i+1, xk) = n−(n−i+1)+a+(j+1)
n

for this integer j and πA(xn−i+1, xk+1)−πA(xn−i+1, xk) = − 1
n
≤ 0.

Thus πA(xn−i+1, xk+1)− πA(xn−i+1, xk) ≤ 0 holds if k + 1 ≤ n− i + 1− a. The result follows.

(d). To prove the result, it suffices to show that if k is a positive integer satisfying i−a+1 ≤ k ≤
i + a− 1 and k + 2 ≤ n− i + 1− a, then ΠD(σi, xk+2) > ΠD(σi, xk) or ΠA(σi, xk) > ΠA(σi, xk+2).

Now ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σi, xk) > ΠA(σi, xk+2) holds if and only

if 1
2
(πA(xi, xk) + πA(xn−i+1, xk)) > 1

2
(πA(xi, xk+2) + πA(xn−i+1, xk+2)) or πA(xi, xk)− πA(xi, xk+2) >

πA(xn−i+1, xk+2) − πA(xn−i+1, xk). It thus suffices to show that πA(xi, xk) − πA(xi, xk+2) ≥ 0 >
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πA(xn−i+1, xk+2) − πA(xn−i+1, xk) for all integers k satisfying i − a + 1 ≤ k ≤ i + a − 1 and

k + 2 ≤ n− i + 1− a.

Note that if k satisfies i−a+1 ≤ k ≤ i+a−1, then we know from equation (1) that πA(xi, xk) = 1.

From this it follows that if k satisfies i− a + 1 ≤ k ≤ i + a− 1, then πA(xi, xk) ≥ πA(xi, xk+2) and

πA(xi, xk)− πA(xi, xk+2) ≥ 0.

Now I show that πA(xn−i+1, xk+2) − πA(xn−i+1, xk) < 0 if k + 2 ≤ n − i + 1 − a. I consider two

cases:

Case 1: Suppose k + 2 = n − i + 1 − a − 2j + 1 for some positive integer j. In this case, we

have k = n − i + 1 − a − 2(j + 1) + 1 for this same integer j and we know from equation (1)

that πA(xn−i+1, xk+2) = n−(n−i+1)+a+j
n

and πA(xn−i+1, xk) = n−(n−i+1)+a+j+1
n

for this integer j. Thus

πA(xn−i+1, xk+2)− πA(xn−i+1, xk) = − 1
n

< 0 holds in this case.

Case 2: Suppose k + 2 = n− i + 1− a− 2j + 1 does not hold for any positive integer j. In this

case, we have k+2 = n− i+1−a−2j for some nonnegative integer j and k = n− i+1−a−2(j+1)

for this same integer j. Thus we know from equation (1) that πA(xn−i+1, xk+2) = n−(n−i+1)+a+j
n

and

πA(xn−i+1, xk) = n−(n−i+1)+a+(j+1)
n

for this integer j, meaning πA(xn−i+1, xk+2) − πA(xn−i+1, xk) =

− 1
n

< 0. In either case, we have πA(xn−i+1, xk+2)− πA(xn−i+1, xk) < 0 and the result holds.

¤

Lemma 3. There is an equilibrium in which A uses a symmetric strategy σ = (σ1, . . . , σn) such

that σi = 0 for all positive integers i satisfying 1 ≤ i ≤ a− 1.

Proof. Consider some σ ∈ ΣA. Since σ is a symmetric strategy, we can write σ =
∑n/2

i=1 2σiσ
i.

Now consider the alternative strategy σ′ given by σ′ =
∑a−1

i=1 2σiσ
a +

∑n/2
i=a 2σiσ

i. Note that σ′ is a

symmetric strategy with σi = 0 for all positive integers i satisfying 1 ≤ i ≤ a − 1. Thus to prove

the result it suffices to show that σ′ is also a maxminimizer strategy. And to prove this it suffices

to show that ΠA(σ′, xk) ≥ ΠA(σ, xk) for all k. I thus seek to prove ΠA(σ′, xk) − ΠA(σ, xk) ≥ 0 for

all k.

Note that σ′ − σ =
∑a−1

i=1 2σi(σ
a − σi). Thus ΠA(σ′, xk) − ΠA(σ, xk) =

∑a−1
i=1 2σi(ΠA(σa, xk) −

ΠA(σi, xk)), and to prove that ΠA(σ′, xk) − ΠA(σ, xk) ≥ 0 for all k, it suffices to show that

ΠA(σa, xk)− ΠA(σi, xk) ≥ 0 for all k and all positive integers i satisfying 1 ≤ i ≤ a− 1.

Now we know from Lemma 1(c) that if D chooses an action xk with k ≤ n
2
, then A’s payoff from

using a strategy σi with i < k + a and i ≤ n
2

is nondecreasing in i. But for any positive integer k,
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we have i < k + a and i ≤ n
2

for all positive integers i ≤ a. Thus for any k ≤ n
2

and any positive

integer i satisfying 1 ≤ i ≤ a−1, we have ΠA(σa, xk) ≥ ΠA(σi, xk) and ΠA(σa, xk)−ΠA(σi, xk) ≥ 0.

But for any symmetric strategy σ, we have ΠA(σ, xk) = ΠA(σ, xn−k+1). Thus if ΠA(σa, xk) −
ΠA(σi, xk) ≥ 0 for some k, then ΠA(σa, xn−k+1) − ΠA(σi, xn−k+1) ≥ 0. But this means that if

ΠA(σa, xk)− ΠA(σi, xk) ≥ 0 holds for all k ≤ n
2

and any positive integer i satisfying 1 ≤ i ≤ a− 1,

then ΠA(σa, xk) − ΠA(σi, xk) ≥ 0 also holds for all k > n
2

and any positive integer i satisfying

1 ≤ i ≤ a − 1. But then ΠA(σa, xk) − ΠA(σi, xk) ≥ 0 holds for all k and all positive integers i

satisfying 1 ≤ i ≤ a− 1. The result then follows.

¤

Lemma 4. Suppose A uses a symmetric strategy σ that has a gap at xi for some positive integer i

satisfying a + 1 ≤ i ≤ n
2
. Also suppose that σi−1 > 0 for this i. Then it is not a best response for

D to take the action xi−a.

Proof. To prove this it suffices to show that either ΠD(σ, xi−a+1) > ΠD(σ, xi−a) or ΠD(σ, xi−a+2) >

ΠD(σ, xi−a) if A uses a symmetric strategy σ that has a gap at xi for some positive integer i

satisfying a + 1 ≤ i ≤ n
2
. Now since σ is a symmetric strategy, we can write σ =

∑n/2
j=1 2σjσ

j.

And since σ has a gap at xi, we know that σi = 0. Thus σ =
∑i−1

j=1 2σjσ
j +

∑n/2
j=i+1 2σjσ

j and

ΠD(σ, xk) =
∑i−1

j=1 2σjΠD(σj, xk) +
∑n/2

j=i+1 2σjΠD(σj, xk) for all k. I consider two cases:

Case 1: Suppose σj > 0 for some positive integer j satisfying i + 1 ≤ j ≤ n
2
. We know from

Lemma 2(a) that ΠD(σj, xi−a+1) > ΠD(σj, xi−a) for any such j. And we also know from Lemma

2(c) that ΠD(σj, xi−a+1) ≥ ΠD(σj, xi−a) for any j ≤ i − 1. Combining these results with the fact

that ΠD(σ, xk) =
∑i−1

j=1 2σjΠD(σj, xk)+
∑n/2

j=i+1 2σjΠD(σj, xk) for any k shows that ΠD(σ, xi−a+1) >

ΠD(σ, xi−a).

Case 2: Suppose σj > 0 does not hold for any positive integer j satisfying i + 1 ≤ j ≤ n
2
. In

that case, we have σi−1 > 0 and ΠD(σ, xk) =
∑i−1

j=1 2σjΠD(σj, xk). Now we know from Lemma 2(d)

that ΠD(σi−1, xi−a+2) > ΠD(σi−1, xi−a). And we know from Lemma 2(c) that ΠD(σj, xi−a+2) ≥
ΠD(σj, xi−a) for all j < i − 1. Combining this with the facts that σi−1 > 0 and ΠD(σ, xk) =
∑i−1

j=1 2σjΠD(σj, xk) shows that ΠD(σ, xi−a+2) > ΠD(σ, xi−a). Thus either ΠD(σ, xi−a+1) > ΠD(σ, xi−a)

or ΠD(σ, xi−a+2) > ΠD(σ, xi−a) and the result holds.

¤
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Theorem 2. There is a strategy in ΣA
a with no gaps. Furthermore, if there is a strategy σ ∈ ΣA

a

such that σj > 0 and σi = 0 for all i < j for some j ≤ n
2
, then for this j there is also a strategy

σ′ ∈ ΣA
a with no gaps such that σ′j > 0 and σ′i = 0 for all i < j.

Proof. We know from Lemma 3 that there is a strategy in ΣA
a . Any such strategy σ is a symmetric

strategy so σi > 0 for some i ≤ n
2

for any such strategy. Thus for any such strategy σ there is some

j ≤ n
2

such that σj > 0 and σi = 0 for all i < j. Consider some such j and let ΣA
aj denote the set

of strategies in ΣA
a for which σj > 0 and σi = 0 for all i < j. To prove the result it suffices to show

that there is a strategy in ΣA
aj with no gaps.

Suppose by means of contradiction that there is no strategy in ΣA
aj with no gaps. In that case,

all strategies in ΣA
aj have gaps. Let r denote the smallest integer such that there is a strategy in

ΣA
aj with r distinct gaps or r distinct integers i such that there is a gap at xi, and let ΣA

ajr denote

the set of strategies in ΣA
aj with exactly r gaps.

Now let i denote the smallest integer i such that there is a strategy in ΣA
ajr with a gap at xi. Note

that a + 1 ≤ i ≤ n
2
: If there is a gap at xi in some strategy σ ∈ ΣA

ajr for some i > n
2
, then since σ is

a symmetric strategy, there is also a gap at xn−i+1, meaning there is a gap at some xi with i ≤ n
2
.

And since any strategy σ ∈ ΣA
ajr has σi = 0 for all positive integers i satisfying 1 ≤ i ≤ a − 1, the

smallest i for which we can have σi > 0 is i = a and the smallest i for which there can be a gap at

xi is i = a + 1. Thus if i is the smallest integer such that there is a strategy in ΣA
ajr with a gap at

xi, we have a + 1 ≤ i ≤ n
2
.

Now let σ denote a strategy in ΣA
ajr with a gap at xi. Since i is the smallest integer such that σ

has a gap at xi, it follows that σi−1 > 0. And since a+1 ≤ i ≤ n
2
, it follows from Lemma 4 that if A

uses the strategy σ, then it is not a best response for D to choose the action xi−a. In particular, if

Π ≡ max1≤k≤n ΠD(σ, xk) denotes the maximum payoff that D can achieve when A uses the strategy

σ, then ΠD(σ, xi−a) < Π.

Now let σε be the strategy defined by σε ≡ σ − εσi−1 + εσi. Since σi−1 > 0, for sufficiently small

ε > 0, we have σε
i−1 > 0 and σε ≥ 0. Thus σε is a feasible symmetric strategy. Furthermore, since

σε
i > 0, σε has fewer gaps than σ (and σε may even have no gaps). Thus to obtain a contradiction,

it suffices to show that σε is a maxminimizer strategy for some sufficiently small ε > 0 or that

ΠD(σε, xk) ≤ Π for all k if ε > 0 is sufficiently small. I first show that this holds if k ≤ n
2
.

30



Since ΠD(σ, xk) is continuous in σ for all k, for sufficiently small ε > 0, we have ΠD(σε, xi−a) < Π.

Thus to prove that ΠD(σε, xk) ≤ Π for all k ≤ n
2

if ε > 0 is sufficiently small, it suffices to show

that ΠD(σε, xk) ≤ ΠD(σ, xk) for all k ≤ n
2

with k 6= i− a if ε > 0 is sufficiently small. Now σε−σ =

ε(σi − σi−1). Thus for all k, ΠD(σε, xk) − ΠD(σ, xk) = ε(ΠD(σi, xk) − ΠD(σi−1, xk)). So for ε > 0,

ΠD(σε, xk) ≤ ΠD(σ, xk) holds if and only if ΠD(σi, xk) ≤ ΠD(σi−1, xk) or ΠA(σi, xk) ≥ ΠA(σi−1, xk).

So to prove that ΠD(σε, xk) ≤ Π for all k ≤ n
2

if ε > 0 is sufficiently small, it suffices to show that

ΠA(σi, xk) ≥ ΠA(σi−1, xk) for all k ≤ n
2

with k 6= i− a.

Now if i − a < k ≤ n
2
, then we know from Lemma 1(c) that ΠA(σi, xk) ≥ ΠA(σi−1, xk). And

if k ≤ i − a − 1, then we know from Lemma 1(a) that ΠA(σi, xk) = ΠA(σi−1, xk). Thus we have

ΠA(σi, xk) ≥ ΠA(σi−1, xk) for all k ≤ n
2

with k 6= i− a, and ΠD(σε, xk) ≤ Π for all k ≤ n
2

if ε > 0 is

sufficiently small.

But since σε is a symmetric strategy, ΠD(σε, xk) = ΠD(σε, xn−k+1) for all k. Thus since ΠD(σε, xk) ≤
Π for all k ≤ n

2
if ε > 0 is sufficiently small, we also have ΠD(σε, xk) ≤ Π for all k if ε > 0 is suffi-

ciently small. But I have indicated that this contradicts my assumption that there is no strategy

in ΣA
aj with no gaps. Thus there is a strategy in ΣA

aj with no gaps and the result follows.

¤

Theorem 3. Let j be the smallest positive integer such that there is some σ ∈ ΣA
a with σj > 0.

Then in every equilibrium (σA, σD), all actions of the form xi with j ≤ i ≤ n− j + 1 must be best

responses for A to D’s strategy.

Proof. If j is the smallest positive integer such that there is some σ ∈ ΣA
a with σj > 0, then the fact

that all strategies in ΣA
a are symmetric means that j ≤ n

2
. Also, since j is the smallest such integer,

it follows that if σ ∈ ΣA
a has σj > 0, then σi = 0 for all i < j. We thus know from Theorem 2 that

there is a strategy σA′ ∈ ΣA
a with no gaps such that σA′

j > 0. Any such strategy takes all actions of

the form xi with j ≤ i ≤ n− j + 1 with positive probability.

Now suppose (σA, σD) is an equilibrium. In that case, σA′ is a maxminimizer strategy for A, σD

is a maxminimizer strategy for D, and (σA′ , σD) is also an equilibrium. But σA′ is a strategy that

takes all actions of the form xi with j ≤ i ≤ n− j + 1 with positive probability. Thus all actions of

the form xi with j ≤ i ≤ n − j + 1 are best responses for A to D’s strategy. But I have indicated

that this holds for any equilibrium (σA, σD). Thus in every equilibrium (σA, σD), all actions of the

form xi with j ≤ i ≤ n− j + 1 must be best responses for A to D’s strategy.
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Theorem 4. Suppose there is a strategy in ΣA
a such that one of D’s best responses to this strategy

is xj for some j < n
2
− a. Then there is also a strategy in ΣA

a such that all actions of the form xk

with j ≤ k ≤ n
2
− a are best responses for D.

Proof. Consider some j < n
2
− a such that there is a strategy in ΣA

a in which one of D’s best

responses to this strategy is xj. Suppose by means of contradiction that there is no strategy in ΣA
a

such that all actions of the form xk with j ≤ k ≤ n
2
− a are best responses for D. In that case, if

A uses a strategy in ΣA
a such that one of D’s best responses is xj, then there is some k satisfying

j < k ≤ n
2
− a such that xk is not a best response for A.

Let h denote the unique integer satisfying j < h ≤ n
2
− a such that A has a strategy in ΣA

a for

which all actions of the form xk with j ≤ k < h are best responses for D but A does not have a

strategy in ΣA
a such that all actions of the form xk with j ≤ k ≤ h are best responses for D. Also let

ΣA
ajh denote the set of strategies for A in ΣA

a such that all actions of the form xk with j ≤ k < h are

best responses for D. Finally, let π ≡ supσ∈ΣA
ajh

ΠD(σ, xh) and for any σ ∈ ΣA
ajh, let Π ≡ ΠD(σ, xj).

I claim that there is a strategy σ ∈ ΣA
ajh such that ΠD(σ, xh) = π. To see this, let {σ(r)}∞r=1 denote

an infinite sequence of strategies such that σ(r) ∈ ΣA
ajh ∀ r and limr→∞ ΠD(σ(r), xh) = π. Note that

σ(r) ∈ Σa ∀ r. So since Σa is a compact set, the infinite sequence {σ(r)}∞r=1 has a limit point in Σa.

Now let σ denote one of the limit points of the sequence {σ(r)}∞r=1 in Σa. I seek to demonstrate

that σ ∈ ΣA
ajh and ΠD(σ, xh) = π. First note that there is some subsequence of {σ(r)}∞r=1, say

{σ(rs)}∞s=1, such that lims→∞ σ(rs) = σ since σ is a limit point of the sequence {σ(r)}∞r=1.

Now ΠD(σ(rs), xk) = Π for all k satisfying j ≤ k < h, lims→∞ ΠD(σ(rs), xh) = π, and ΠD(σ(rs), xk) ≤
Π for all positive integers k since each σ(rs) is in ΣA

ajh. But lims→∞ σ(rs) = σ and ΠD(σ, xk) is con-

tinuous in σ for all k. Thus these facts imply that ΠD(σ, xk) = Π for all k satisfying j ≤ k < h,

ΠD(σ, xh) = π, and ΠD(σ, xk) ≤ Π for all positive integers k. And these facts together imply that

σ ∈ ΣA
ajh and ΠD(σ, xh) = π.

Since σ ∈ ΣA
ajh, but there is no strategy in ΣA

a such that all actions of the form xk with j ≤ k ≤ h

are best responses for D, it must be the case that ΠD(σ, xh) < ΠD(σ, xh−1) and π < Π. To obtain

a contradiction, it thus suffices to show that there is some σ′ ∈ ΣA
ajh for which π < ΠD(σ′, xh) ≤ Π,

as this would contradict the definition of π.
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First I show that σh+a−1 > 0. To show this, note that it suffices to show that ΠD(σi, xh) ≥
ΠD(σi, xh−1) for all positive integers i such that i ≤ n

2
and i 6= h + a− 1: For any symmetric strat-

egy σ, we have σ =
∑n/2

i=1 2σiσ
i and ΠD(σ, xk) =

∑n/2
i=1 2σiΠD(σi, xk) for all k. Thus if ΠD(σ, xh) <

ΠD(σ, xh−1), then
∑n/2

i=1 2σiΠD(σi, xh) <
∑n/2

i=1 2σiΠD(σi, xh−1) and 2σh+a−1(ΠD(σh+a−1, xh−1) −
ΠD(σh+a−1, xh)) >

∑h+a−2
i=1 2σi(ΠD(σi, xh)−ΠD(σi, xh−1))+

∑n/2
i=h+a 2σi(ΠD(σi, xh)−ΠD(σi, xh−1)).

But if ΠD(σi, xh) ≥ ΠD(σi, xh−1) for all positive integers i such that i ≤ n
2

and i 6= h + a− 1, then

this expression implies that 2σh+a−1(ΠD(σh+a−1, xh−1) − ΠD(σh+a−1, xh)) > 0. Since this can only

hold if σh+a−1 > 0, it suffices to show that ΠD(σi, xh) ≥ ΠD(σi, xh−1) for all positive integers i such

that i ≤ n
2

and i 6= h + a− 1 in order to prove that σh+a−1 > 0.

Now if h + a ≤ i ≤ n
2
, then we know from Lemma 2(a) that ΠD(σi, xh) > ΠD(σi, xh−1). And if

1 ≤ i ≤ h + a− 2, then we know from Lemma 2(c) that ΠD(σi, xh) ≥ ΠD(σi, xh−1). But this means

that ΠD(σi, xh) ≥ ΠD(σi, xh−1) for all positive integers i such that i ≤ n
2

and i 6= h + a− 1. From

this it follows that σh+a−1 > 0.

Now let σε be the strategy defined by σε ≡ σ− εσh+a−1 + εσh+a. Since σh+a−1 > 0, for sufficiently

small ε > 0, we have σε
h+a−1 > 0 and σε ≥ 0. Thus σε is a feasible symmetric strategy. To obtain a

contradiction, it suffices to show that for sufficiently small ε > 0, σε is a strategy satisfying σε ∈ ΣA
ajh

and ΠD(σε, xh) > π. To prove this, it suffices to show that ΠD(σε, xk) ≤ Π for all k if ε > 0 is

sufficiently small, ΠD(σε, xk) = ΠD(σ, xk) for all k satisfying j ≤ k < h, and ΠD(σε, xh) > ΠD(σ, xh)

if ε > 0.

First I show that ΠD(σε, xk) ≤ Π for all k if ε > 0 is sufficiently small. To do this I first consider

the case where k ≤ n
2
. Since ΠD(σ, xk) is continuous in σ for all k, the fact that ΠD(σ, xh) < Π

means that ΠD(σε, xh) ≤ Π for sufficiently small ε > 0. Thus to prove that ΠD(σε, xk) ≤ Π for all

k ≤ n
2

if ε > 0 is sufficiently small, it suffices to show that ΠD(σε, xk) ≤ ΠD(σ, xk) for all k ≤ n
2

with k 6= h if ε > 0 is sufficiently small.

Now σε − σ = ε(σh+a − σh+a−1). Thus for all k, ΠD(σε, xk) − ΠD(σ, xk) = ε(ΠD(σh+a, xk) −
ΠD(σh+a−1, xk)). So for ε > 0, ΠD(σε, xk) ≤ ΠD(σ, xk) holds if and only if ΠD(σε, xk)−ΠD(σ, xk) ≤
0, which holds if and only if ΠD(σh+a, xk)−ΠD(σh+a−1, xk) ≤ 0 or ΠA(σh+a, xk) ≥ ΠA(σh+a−1, xk).

So to prove that ΠD(σε, xk) ≤ Π for all k ≤ n
2

if ε > 0 is sufficiently small, it suffices to show that

ΠA(σh+a, xk) ≥ ΠA(σh+a−1, xk) for all k ≤ n
2

with k 6= h.
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Now if h < k ≤ n
2
, then we know from Lemma 1(c) that ΠA(σh+a, xk) ≥ ΠA(σh+a−1, xk). And

if k ≤ h − 1, then we know from Lemma 1(a) that ΠA(σh+a, xk) = ΠA(σh+a−1, xk). Thus we have

ΠA(σh+a, xk) ≥ ΠA(σh+a−1, xk) for all k ≤ n
2

with k 6= h, and ΠD(σε, xk) ≤ Π for all k ≤ n
2

if ε > 0

is sufficiently small.

But since σε is a symmetric strategy, ΠD(σε, xk) = ΠD(σε, xn−k+1) for all k. Thus since ΠD(σε, xk) ≤
Π for all k ≤ n

2
if ε > 0 is sufficiently small, we also have ΠD(σε, xk) ≤ Π for all k if ε > 0 is suffi-

ciently small.

Now I show that ΠD(σε, xk) = ΠD(σ, xk) for all k satisfying j ≤ k < h. Since ΠD(σε, xk) −
ΠD(σ, xk) = ε(ΠD(σh+a, xk)−ΠD(σh+a−1, xk)) for all k, to prove that ΠD(σε, xk) = ΠD(σ, xk) for all

k satisfying j ≤ k < h, it suffices to show that ΠD(σh+a, xk) = ΠD(σh+a−1, xk) for all k satisfying

j ≤ k < h. But it follows immediately from Lemma 1(a) that ΠD(σh+a, xk) = ΠD(σh+a−1, xk) for

all k satisfying j ≤ k < h. Thus ΠD(σε, xk) = ΠD(σ, xk) holds for all k satisfying j ≤ k < h.

To finish the proof, I only need to show that ΠD(σε, xh) > ΠD(σ, xh) if ε > 0. Since ΠD(σε, xh)−
ΠD(σ, xh) = ε(ΠD(σh+a, xh) − ΠD(σh+a−1, xh)), to prove that ΠD(σε, xh) > ΠD(σ, xh) if ε > 0,

it suffices to show that ΠD(σh+a, xh) > ΠD(σh+a−1, xh) or ΠA(σh+a, xh) < ΠA(σh+a−1, xh). Now

ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σh+a, xh) < ΠA(σh+a−1, xh) holds if and only

if 1
2
(πA(xh+a, xh) + πA(xn−h−a+1, xh)) < 1

2
(πA(xh+a−1, xh) + πA(xn−h−a+2, xh)) or πA(xh+a−1, xh) −

πA(xh+a, xh) > πA(xn−h−a+1, xh)−πA(xn−h−a+2, xh). In order to prove that ΠD(σε, xh) > ΠD(σ, xh)

if ε > 0, it thus suffices to show that πA(xh+a−1, xh) − πA(xh+a, xh) > 1
n
≥ πA(xn−h−a+1, xh) −

πA(xn−h−a+2, xh).

To see that πA(xh+a−1, xh) − πA(xh+a, xh) > 1
n
, note from equation (1) that πA(xh+a−1, xh) = 1

and πA(xh+a, xh) = n−h
n

. Thus πA(xh+a−1, xh) − πA(xh+a, xh) = h
n
. But xh−1 is a feasible policy in

the policy space, so h− 1 ≥ 1 and h ≥ 2. Thus πA(xh+a−1, xh)− πA(xh+a, xh) ≥ 2
n

> 1
n
.

To see that πA(xn−h−a+1, xh) − πA(xn−h−a+2, xh) ≤ 1
n
, first let i = n − h − a + 1. Note that if

h = i−a−2j+1 for any positive integer j, then from equation (1) it follows that πA(xi, xh) = n−i+a+j
n

,

πA(xi+1, xh) = n−(i+1)+a+j
n

, and πA(xn−h−a+1, xh)− πA(xn−h−a+2, xh) = 1
n
. And if h = i− a− 2j + 1

does not hold for any positive integer j, then h = i − a − 2j for some nonnegative integer j and

h = i + 1 − a − 2(j + 1) + 1 for this same integer j. But then we see from equation (1) that

πA(xi, xh) = n−i+a+j
n

and πA(xi+1, xh) = n−(i+1)+a+j+1
n

= n−i+a+j
n

, meaning πA(xn−h−a+1, xh) −
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πA(xn−h−a+2, xh) = 0. In either case, we have πA(xn−h−a+1, xh)− πA(xn−h−a+2, xh) ≤ 1
n
. From this

it follows that ΠD(σε, xh) > ΠD(σ, xh) if ε > 0.

But then we see that for sufficiently small ε > 0, σε is a strategy in ΣA
ajh for which ΠD(σε, xh) > π.

This contradicts the definition of π and proves the desired result.

¤

Theorem 5. If σ ∈ ΣA
a , then one of D’s best responses to σ is to choose an action of the form xk

for some positive integer k ≤ n
2
− a.

Proof. Suppose by means of contradiction that σ ∈ ΣA
a , but none of D’s best responses to σ is to

choose an action of the form xk for some positive integer k ≤ n
2
− a. First I show that if one of D’s

best responses to σ is to choose xn/2−a+1, then σi > 0 for some i ≤ n
2
− 2.

Since σ is a symmetric strategy, we have σ =
∑n/2

i=1 2σiσ
i. Thus if σi = 0 for all i ≤ n

2
− 2,

then σ = 2σn/2−1σ
n/2−1 + 2σn/2σ

n/2 and ΠD(σ, xk) = 2σn/2−1ΠD(σn/2−1, xk) + 2σn/2ΠD(σn/2, xk).

Now if xn/2−a+1 is one of D’s best responses to σ but D does not have a best response to σ

that is of the form xk for some positive integer k ≤ n
2
− a, then ΠD(σ, xn/2−a+1) > ΠD(σ, xn/2−a)

or ΠD(σ, xn/2−a+1) − ΠD(σ, xn/2−a) > 0 or 2σn/2−1(ΠD(σn/2−1, xn/2−a+1) − ΠD(σn/2−1, xn/2−a)) +

2σn/2(ΠD(σn/2, xn/2−a+1)−ΠD(σn/2, xn/2−a)) > 0. This requires that either ΠD(σn/2−1, xn/2−a+1) >

ΠD(σn/2−1, xn/2−a) or ΠD(σn/2, xn/2−a+1) > ΠD(σn/2, xn/2−a). Thus to show that σi > 0 for some

i ≤ n
2
−2 if one of D’s best responses to σ is xn/2−a+1, it suffices to show that ΠD(σn/2−1, xn/2−a+1) ≤

ΠD(σn/2−1, xn/2−a) and ΠD(σn/2, xn/2−a+1) ≤ ΠD(σn/2, xn/2−a). Proving this amounts to showing

that ΠA(σn/2−1, xn/2−a+1) ≥ ΠA(σn/2−1, xn/2−a) and ΠA(σn/2, xn/2−a+1) ≥ ΠA(σn/2, xn/2−a).

Recall that ΠA(σi, xk) = 1
2
(πA(xi, xk) + πA(xn−i+1, xk)). Thus ΠA(σi, xk+1) ≥ ΠA(σi, xk) holds

if and only if 1
2
(πA(xi, xk+1) + πA(xn−i+1, xk+1)) ≥ 1

2
(πA(xi, xk) + πA(xn−i+1, xk)) or πA(xi, xk+1)−

πA(xi, xk) ≥ πA(xn−i+1, xk)− πA(xn−i+1, xk+1).

To show that ΠA(σn/2−1, xn/2−a+1) ≥ ΠA(σn/2−1, xn/2−a), it thus suffices to show that

πA(xn/2−1, xn/2−a+1)−πA(xn/2−1, xn/2−a) ≥ πA(xn/2+2, xn/2−a)−πA(xn/2+2, xn/2−a+1). Now by equa-

tion (1) it follows that πA(xn/2+2, xn/2−a) = πA(xn/2+2, xn/2−a+1) = n−(n/2+2)+a+1
n

and πA(xn/2−1, xn/2−a) =

πA(xn/2−1, xn/2−a+1) = 1. Thus πA(xn/2−1, xn/2−a+1)−πA(xn/2−1, xn/2−a) ≥ 0 ≥ πA(xn/2+2, xn/2−a)−
πA(xn/2+2, xn/2−a+1) and we have ΠA(σn/2−1, xn/2−a+1) ≥ ΠA(σn/2−1, xn/2−a).

And to show that ΠA(σn/2, xn/2−a+1) ≥ ΠA(σn/2, xn/2−a), it suffices to show that πA(xn/2, xn/2−a+1)−
πA(xn/2, xn/2−a) ≥ πA(xn/2+1, xn/2−a)− πA(xn/2+1, xn/2−a+1). By equation (1) it follows that
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πA(xn/2+1, xn/2−a) = n−(n/2+1)+a+1
n

, πA(xn/2+1, xn/2−a+1) = n−(n/2+1)+a
n

, πA(xn/2, xn/2−a) = n−n/2+a
n

,

and πA(xn/2, xn/2−a+1) = 1. Thus πA(xn/2, xn/2−a+1)−πA(xn/2, xn/2−a) = n/2−a
n

≥ 1
n

= πA(xn/2+1, xn/2−a)−
πA(xn/2+1, xn/2−a+1) and we have ΠA(σn/2, xn/2−a+1) ≥ ΠA(σn/2, xn/2−a). Thus we have both

ΠA(σn/2−1, xn/2−a+1) ≥ ΠA(σn/2−1, xn/2−a) and ΠA(σn/2, xn/2−a+1) ≥ ΠA(σn/2, xn/2−a), so σi > 0

for some i ≤ n
2
− 2 if one of D’s best responses to σ is xn/2−a+1.

Now let σε = (1− ε)σ + εσn/2 for some arbitrarily small ε > 0. Next I seek to show that if xk is

a best response to σ for some k satisfying n
2
− a + 2 ≤ k ≤ n

2
+ a− 1, then ΠD(σε, xk) < ΠD(σ, xk)

for any ε > 0. To see this, first note that if xk is a best response to σ, then since xn/2−a is

not a best response, we have ΠD(σ, xk) > ΠD(σ, xn/2−a) ≥ 0. Thus ΠD(σ, xk) > 0 for any k

satisfying n
2
− a + 2 ≤ k ≤ n

2
+ a − 1. Also, from equation (1) it follows that ΠA(σn/2, xk) =

1
2
(πA(xn/2, xk) + πA(xn/2+1, xk)) = 1 for any k satisfying n

2
− a + 2 ≤ k ≤ n

2
+ a − 1. Thus

ΠD(σn/2, xk) = 0 for any such k. But ΠD(σε, xk) = (1 − ε)ΠD(σ, xk) + εΠD(σn/2, xk) for any k.

Thus if ΠD(σ, xk) > 0 and ΠD(σn/2, xk) = 0, then ΠD(σε, xk) < ΠD(σ, xk) for any ε > 0. From this

we see that if xk is a best response to σ for some k satisfying n
2
− a + 2 ≤ k ≤ n

2
+ a − 1, then

ΠD(σε, xk) < ΠD(σ, xk) for any ε > 0.

Now I derive a contradiction to the assumption that σ ∈ ΣA
a , but none of D’s best responses to

σ is to choose an action of the form xk for some positive integer k ≤ n
2
− a. I consider two cases:

Case 1: Suppose xn/2−a+1 is not a best response to σ for D. In this case, all actions of the form

xk for positive integers k ≤ n
2
− a + 1 are not best responses to σ for D. And σ is a symmetric

strategy, so ΠD(σ, xk) = ΠD(σ, xn−k+1) for all k and all actions of the form xn−k+1 for positive

integers k ≤ n
2
− a + 1 are not best responses to σ for D either. Thus any best response to σ for D

must be of the form xk for some k satisfying n
2
− a + 2 ≤ k ≤ n

2
+ a− 1.

Now let Π ≡ ΠD(σ, xk), where xk is one of D’s best responses to σ. I seek to show that if ε > 0

is sufficiently small, then ΠD(σε, xk) < Π for all k. In this case, σ would not be a maxminimizer

strategy for A because σA = σε would achieve a greater value of minσD ΠA(σA, σD) than σA = σ.

To see this, first note that if xk is a best response to σ, then n
2
− a + 2 ≤ k ≤ n

2
+ a − 1, and

we know that ΠD(σε, xk) < ΠD(σ, xk) for any ε > 0. And if xk is not a best response to σ, then

ΠD(σ, xk) < Π, and since ΠD is continuous in σ, ΠD(σε, xk) < Π for sufficiently small ε > 0. But

this means that for sufficiently small ε > 0, we have ΠD(σε, xk) < Π for all k. Thus it cannot be

the case that xn/2−a+1 is not a best response to σ for D.
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Case 2: Suppose xn/2−a+1 is a best response to σ for D. In this case, we know that σi > 0 for

some i ≤ n
2
− 2.

First note that ΠA(σn/2, xn/2−a+1) = ΠA(σn/2−1, xn/2−a+1) > ΠA(σi, xn/2−a+1) for any i ≤ n
2
−

2. To see that ΠA(σn/2, xn/2−a+1) = ΠA(σn/2−1, xn/2−a+1), note that the fact that ΠA(σi, xk) =

1
2
(πA(xi, xk) + πA(xn−i+1, xk)) means that ΠA(σn/2, xn/2−a+1) = ΠA(σn/2−1, xn/2−a+1) holds if and

only if 1
2
(πA(xn/2, xn/2−a+1)+πA(xn/2+1, xn/2−a+1)) = 1

2
(πA(xn/2−1, xn/2−a+1)+πA(xn/2+2, xn/2−a+1)).

But we know from equation (1) that πA(xn/2, xn/2−a+1) = πA(xn/2−1, xn/2−a+1) = 1, πA(xn/2+2, xn/2−a+1) =

n−(n/2+2)+a+1
n

, and πA(xn/2+1, xn/2−a+1) = n−(n/2+1)+a
n

= πA(xn/2+2, xn/2−a+1). Thus ΠA(σn/2, xn/2−a+1) =

ΠA(σn/2−1, xn/2−a+1) indeed holds.

Now ΠA(σn/2, xn/2−a+1) > ΠA(σi, xn/2−a+1) holds for i ≤ n
2
−2 if and only if 1

2
(πA(xn/2, xn/2−a+1)+

πA(xn/2+1, xn/2−a+1)) > 1
2
(πA(xi, xn/2−a+1)+πA(xn−i+1, xn/2−a+1)) or πA(xn/2, xn/2−a+1)−πA(xi, xn/2−a+1) >

πA(xn−i+1, xn/2−a+1)− πA(xn/2+1, xn/2−a+1) holds for i ≤ n
2
− 2. But πA(xn/2, xn/2−a+1) = 1, so

πA(xn/2, xn/2−a+1)− πA(xi, xn/2−a+1) ≥ 0. And if i ≤ n
2
− 2, then n− i + 1 ≥ n

2
+ 3, and voters with

ideal points no greater than xn/2−a+2 all strictly prefer to vote for candidate D if xA = xn−i+1 and

xD = xn/2−a+1. Thus πA(xn−i+1, xn/2−a+1) ≤ n−(n/2+2)+a
n

if i ≤ n
2
− 2. Combining this with the fact

that πA(xn/2+1, xn/2−a+1) = n−(n/2+1)+a
n

shows that πA(xn−i+1, xn/2−a+1) − πA(xn/2+1, xn/2−a+1) ≤
− 1

n
if i ≤ n

2
− 2. Thus πA(xn/2, xn/2−a+1) − πA(xi, xn/2−a+1) ≥ 0 > πA(xn−i+1, xn/2−a+1) −

πA(xn/2+1, xn/2−a+1) if i ≤ n
2
− 2, and ΠA(σn/2, xn/2−a+1) > ΠA(σi, xn/2−a+1) holds if i ≤ n

2
− 2.

Now let Π ≡ ΠD(σ, xn/2−a+1). Since σ =
∑n/2

i=1 2σiσ
i, we have ΠD(σ, xn/2−a+1) =

∑n/2
i=1 2σiΠD(σi, xn/2−a+1) = 2(σn/2−1+σn/2)ΠD(σn/2, xn/2−a+1)+

∑n/2−2
i=1 2σiΠD(σi, xn/2−a+1). Com-

bining this with the facts that ΠA(σn/2, xn/2−a+1) > ΠA(σi, xn/2−a+1) (and thus ΠD(σn/2, xn/2−a+1) <

ΠD(σi, xn/2−a+1)) holds for i ≤ n
2
−2, and σi > 0 for some i ≤ n

2
−2 means that ΠD(σn/2, xn/2−a+1) <

Π: If we had ΠD(σn/2, xn/2−a+1) ≥ Π, then we would have ΠD(σi, xn/2−a+1) > Π for any i ≤ n
2
− 2,

which would in turn mean that 2(σn/2−1+σn/2)ΠD(σn/2, xn/2−a+1)+
∑n/2−2

i=1 2σiΠD(σi, xn/2−a+1) > Π,

contradicting the fact that Π = ΠD(σ, xn/2−a+1) = 2(σn/2−1 + σn/2)ΠD(σn/2, xn/2−a+1) +
∑n/2−2

i=1 2σiΠD(σi, xn/2−a+1). Thus ΠD(σn/2, xn/2−a+1) < Π.

I now seek to show that if ε > 0 is sufficiently small, then ΠD(σε, xk) < Π for all k. First I

consider the cases k = n
2
− a + 1 and k = n

2
+ a. Since ΠD(σε, xn/2−a+1) = (1− ε)ΠD(σ, xn/2−a+1) +

εΠD(σn/2, xn/2−a+1) and ΠD(σn/2, xn/2−a+1) < Π = ΠD(σ, xn/2−a+1), it follows that ΠD(σε, xn/2−a+1) <
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ΠD(σ, xn/2−a+1) = Π for any ε > 0. And since σε is a symmetric strategy, ΠD(σε, xn/2+a) =

ΠD(σε, xn/2−a+1) < Π for any ε > 0 as well.

Now if k ≤ n
2
− a or k ≥ n

2
+ a + 1, then xk is not a best response to σ for D and ΠD(σ, xk) < Π.

Thus since ΠD(σ, xk) is continuous in σ, if ε > 0 is sufficiently small, we have ΠD(σε, xk) < Π as

well.

Finally, if n
2
− a + 2 ≤ k ≤ n

2
+ a − 1, then we have ΠD(σn/2, xk) = 0. Thus since ΠD(σε, xk) =

(1− ε)ΠD(σ, xk)+ εΠD(σn/2, xk), if ε > 0, we either have ΠD(σε, xk) = 0 or ΠD(σε, xk) < ΠD(σ, xk).

In either case, we have ΠD(σε, xk) < Π if ε > 0. Thus for sufficiently small ε > 0, we have

ΠD(σε, xk) < Π for all k.

Thus regardless of whether we are in Case 1 or Case 2, we see that for sufficiently small ε > 0,

σA = σε would achieve a greater value of minσD ΠA(σA, σD) than σA = σ. This contradicts the

assumption that σ is a maxminimizer strategy and proves the desired result.

¤

Theorem 6. There is an equilibrium (σA, σD) in symmetric strategies characterized by two positive

integers kA and kD satisfying kD ≤ n
2
− a and a ≤ kA ≤ n

2
such that the following hold:

(a). All actions of the form xi with kA ≤ i ≤ n− kA + 1 are best responses for A to D’s strategy.

(b). σA
i = 0 if i < kA or i > n− kA + 1.

(c). All actions of the form xk with kD ≤ k ≤ n
2
− a and n

2
+ a + 1 ≤ k ≤ n − kD + 1 are best

responses for D to A’s strategy.

(d). No actions of the form xk with k < kD or k > n − kD + 1 are best responses for D to A’s

strategy.

(e). kD + a− 2 ≤ kA ≤ kD + a.

Proof. From Theorem 1, we know that there is an equilibrium in symmetric strategies. We also

know from Theorems 4 and 5 that A has an equilibrium strategy in σA ∈ ΣA
a such that there is

some kD ≤ n
2
− a for which all actions of the form xk with kD ≤ k ≤ n

2
− a are best responses for D

and all actions of the form xk with k < kD are not best responses for D. By the symmetry of D’s

payoff function, for any such strategy, all actions of the form xk with n
2

+ a + 1 ≤ k ≤ n− kD + 1

are best responses for D, and all actions of the form xk with k > n− kD + 1 are not best responses

for D. Thus there is an equilibrium strategy for A which satisfies parts (c) and (d) of the theorem.
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Now let kA be the smallest positive integer such that there is some σ ∈ ΣA
a with σkA

> 0. We know

from Theorem 3 that if D uses some symmetric strategy σD such that (σA, σD) is an equilibrium,

then all actions of the form xi with kA ≤ i ≤ n − kA + 1 are best responses for A to D’s strategy.

And since σA ∈ ΣA
a and kA is the smallest positive integer such that there is some σ ∈ ΣA

a with

σkA
> 0, then we also know that σA

i = 0 if i < kA or i > n− kA + 1. Thus we know there is some

equilibrium (σA, σD) in symmetric strategies that satisfies parts (a)-(d) of the theorem.

So to prove the theorem it suffices to show that kD+a−2 ≤ kA ≤ kD+a. To see that kA ≤ kD+a,

first note that there is nothing to prove if kD = n
2
− a since kA ≤ n

2
by definition. So suppose that

kD < n
2
− a and let i be a positive integer satisfying kD + a + 1 ≤ i ≤ n

2
. Note from Lemma 2(a)

that ΠD(σi, xkD+1) > ΠD(σi, xkD
) for any such i.

Since σA is a symmetric strategy, we have σA =
∑n/2

i=1 2σA
i σi. Furthermore, since σA

i = 0 if

i < kA, we have σA =
∑n/2

i=kA
2σA

i σi. Thus ΠD(σA, xk) =
∑n/2

i=kA
2σA

i ΠD(σi, xk) for all k. But then if

kA ≥ kD +a+1, the result from the previous paragraph implies that ΠD(σA, xkD+1) > ΠD(σA, xkD
).

This contradicts the fact that xkD
is a best response for D to A’s strategy, so it must be the case

that kA ≤ kD + a.

Now I show that kD + a − 2 ≤ kA. To see this, I first show that if i = kD + a − 3, then σi is

not a best response for A to D’s strategy. In particular, I show that σi+2 affords A a strictly larger

expected payoff than σi against at least one action which D takes with positive probability, and

σi+2 also affords A an expected payoff at least as large as σi against every action D takes with

positive probability.

To see this, first note that D must take some action xk with k ≤ n
2
−a+1 with positive probability.

If the only actions D takes with positive probability are of the form xk with k ≥ n
2
− a + 2, then

the fact that D is using a symmetric strategy means that the only actions D takes with positive

probability are of the form xk with n
2
− a + 2 ≤ k ≤ n

2
+ a − 1. But in this case, A could win

with probability one by choosing the action xn/2. This contradicts the fact that D is using a

maxminimizing strategy because if D were using the strategy σn/2−a, there would be no action A

could take that would win with probability one. Thus D must take some action xk with k ≤ n
2
−a+1

with positive probability.

Now if D takes an action with positive probability, then the action must be of the form xk or

xn−k+1 with kD ≤ k ≤ n
2
. And A’s expected payoff from using a strategy of the form σi is the same
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regardless of whether D uses the action xk or xn−k+1. Thus to show σi+2 affords A a strictly larger

expected payoff than σi against D’s strategy, we know from the previous two paragraphs that it

suffices to show that ΠA(σi+2, xk) ≥ ΠA(σi, xk) for any positive integer k satisfying n
2
−a+2 ≤ k ≤ n

2

and ΠA(σi+2, xk) > ΠA(σi, xk) for any positive integer k satisfying kD ≤ k ≤ n
2
− a + 1.

If k ≥ n
2
− a + 2, then k + a − 1 ≥ n

2
+ 1. And since i = kD + a − 3 and kD ≤ n

2
− a, we have

i ≤ n
2
− 3 and i + 2 ≤ n

2
− 1. Thus if n

2
− a + 2 ≤ k ≤ n

2
, we have i + 2 ≤ k + a− 1 and we know

from Lemma 1(c) that ΠA(σi+2, xk) ≥ ΠA(σi, xk). So to prove the result, it suffices to show that

ΠA(σi+2, xk) > ΠA(σi, xk) for any positive integer k satisfying kD ≤ k ≤ n
2
− a + 1.

Note that if i ≤ k − a, then we know from Lemma 1(b) that ΠA(σi+1, xk) > ΠA(σi, xk) and

we know from Lemma 1(c) that ΠA(σi+2, xk) ≥ ΠA(σi+1, xk). Thus ΠA(σi+2, xk) > ΠA(σi, xk)

if i ≤ k − a. So to prove that ΠA(σi+2, xk) > ΠA(σi, xk) for any positive integer k satisfying

kD ≤ k ≤ n
2
− a + 1, it suffices to show that ΠA(σi+2, xk) > ΠA(σi, xk) if kD ≤ k ≤ n

2
− a + 1 and

i ≥ k − a + 1.

Now ΠA(σi, xk) = 1
2
(πA(xi, xk)+πA(xn−i+1, xk)). Thus ΠA(σi+2, xk) > ΠA(σi, xk) holds if and only

if 1
2
(πA(xi+2, xk) + πA(xn−i−1, xk)) > 1

2
(πA(xi, xk) + πA(xn−i+1, xk)) or πA(xi+2, xk) − πA(xi, xk) >

πA(xn−i+1, xk) − πA(xn−i−1, xk). It thus suffices to show that πA(xi+2, xk) − πA(xi, xk) ≥ 0 >

πA(xn−i+1, xk) − πA(xn−i−1, xk) for all positive integers k satisfying kD ≤ k ≤ n
2
− a + 1 and

i ≥ k − a + 1.

Since i ≤ n
2
−3, we have n−i+1 ≥ n

2
+4. Thus the fact that k ≤ n

2
−a+1 implies that k ≤ (n−i+

1)−a−3. From this it follows that either k = (n−i+1)−a−2j or k = (n−i+1)−a−2j+1 for some

positive integer j ≥ 2. We then have either k = (n−i−1)−a−2(j−1) or k = (n−i−1)−a−2(j−1)+1

for this same integer j. Thus it follows from equation (1) that πA(xn−i+1, xk) = n−(n−i+1)+a+j
n

for

some positive integer j ≥ 2 and πA(xn−i−1, xk) = n−(n−i−1)+a+j−1
n

for this same integer j. But this

means that πA(xn−i+1, xk)− πA(xn−i−1, xk) = − 1
n
. Thus 0 > πA(xn−i+1, xk)− πA(xn−i−1, xk) for all

positive integers k satisfying kD ≤ k ≤ n
2
− a + 1.

Now I show that πA(xi+2, xk) − πA(xi, xk) ≥ 0 for all positive integers k satisfying kD ≤ k ≤
n
2
− a + 1 and i ≥ k − a + 1. Since i + 2 = kD + a− 1 and k ≥ kD, we have k ≥ i + 2− a + 1. And

i ≥ k−a+1 implies k ≤ i+2+a−1. Thus we have i+2−a+1 ≤ k ≤ i+2+a−1, and we know from

equation (1) that πA(xi+2, xk) = 1. But this immediately implies that πA(xi+2, xk)− πA(xi, xk) ≥ 0
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for all positive integers k satisfying kD ≤ k ≤ n
2
− a + 1 and i ≥ k− a + 1. From this it follows that

ΠA(σi+2, xk) > ΠA(σi, xk) for any positive integer k satisfying kD ≤ k ≤ n
2
− a + 1.

This means that if i = kD + a − 3, then σi+2 affords A a strictly larger expected payoff than σi

against D’s strategy and σi is not a best response for A to D’s strategy. And since D is using a

symmetric strategy, A’s payoff is the same regardless of whether A takes the action xi or xn−i+1.

Thus since σi, a strategy which mixes between xi and xn−i+1, is not a best response for A to D’s

strategy, xi is not a best response for A to D’s strategy either. But this means that we cannot have

kA ≤ i. From this it follows that kA ≥ kD + a− 2.

¤

Theorem 7. lim supn→∞ x(n, δ) ≤ max{1+δ
3

, 1
2
− δ}.

Proof. Note that lim supn→∞ x(n, δ) ≤ 1
2

because any strategy σ ∈ ΣA has σi > 0 for some i ≤ n
2

by

definition of a symmetric strategy. Thus x(n, δ) ≤ xn/2 < 1
2

for all n and lim supn→∞ x(n, δ) ≤ 1
2
. So

to prove that lim supn→∞ x(n, δ) ≤ max{1+δ
3

, 1
2
−δ}, it suffices to show that lim supn→∞ x(n, δ) 6= ∆

for all ∆ ∈ (max{1+δ
3

, 1
2
− δ}, 1

2
].

To see this, suppose by means of contradiction that lim supn→∞ x(n, δ) = ∆ for some ∆ ∈
(max{1+δ

3
, 1

2
− δ}, 1

2
]. Consider some sufficiently small ε > 0 and some sufficiently large integer N

such that ∆− ε− 2
N

> max{1+δ
3

, 1
2
− δ}. Since lim supn→∞ x(n, δ) = ∆, we know there exists some

n > N for which there is some σA ∈ ΣA satisfying σA
i = 0 for all i such that xi < ∆− ε. Since σA

is a symmetric strategy, this implies that σA
i = 0 for all i satisfying xi 6∈ [∆− ε, 1−∆ + ε].

For this n, let xj denote the most liberal policy in X that is also in [∆−ε, 1−∆+ε] and suppose that

A is using the strategy σA given in the previous paragraph. I seek to demonstrate that this implies

that any best response for D, xk, satisfies either xk ∈ [xj−a, xn/2−a] or xk ∈ [xn/2+1+a, xn−j+1+a].

I first note that j
n

> n+a+2
3n

and j
n

> n−2a+2
2n

. Since xj is in [∆− ε, 1−∆ + ε], we have xj = j−1
n−1

≥
∆− ε. And since j < n, this implies that j

n
> j−1

n−1
≥ ∆− ε. Now since ∆− ε− 2

N
> max{1+δ

3
, 1

2
−δ},

we have ∆ − ε − 1
n

> 1+δ
3

> n
3n

+ a−1
3(n−1)

> n
3n

+ a−1
3n

and ∆ − ε > n+a+2
3n

. And we also have

∆− ε− 2
n

> 1
2
− δ > n

2n
− a

n−1
≥ n

2n
− a+1

n
= n−2a−2

2n
and ∆− ε > n−2a+2

2n
. Thus we have j

n
> n+a+2

3n

and j
n

> n−2a+2
2n

.

Since σA is a symmetric strategy, we have σA =
∑n/2

i=1 2σA
i σi. Furthermore, since σA

i = 0 if i < j,

we have σA =
∑n/2

i=j 2σA
i σi. Thus ΠD(σA, xk) =

∑n/2
i=j 2σA

i ΠD(σi, xk) for all k. But if D chooses

some action xk < xj−a, then we know from Lemma 2(a) that ΠD(σi, xk+1) > ΠD(σi, xk) for all i
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satisfying j ≤ i ≤ n
2
. Thus if D chooses some action xk < xj−a, then ΠD(σA, xk+1) > ΠD(σA, xk),

and xk is not a best response for D to σA.

Now note that if D chooses the action xj−a when A uses the strategy σA, then D wins with

probability at least j−a
n

because voters with ideal points xi ≤ xj−a always prefer candidate D

to candidate A. By contrast, if D chooses some action xk ∈ [xn/2−a+1, xn/2], then D loses with

probability 1 whenever A chooses some action xi ∈ [xj, xn/2]: Since j
n

> n−2a+2
2n

, we have j > n
2
−a+1,

and all actions in [xj, xn/2] are within a−1 grid points of all actions in [xn/2−a+1, xn/2]. Furthermore,

if D chooses some action xk ∈ [xn/2−a+1, xn/2] and A chooses some action xi ∈ [xn/2+1, xn−j+1], then

D wins with probability no greater than n−j−a+1
n

since A wins whenever the median voter has ideal

point xm ≥ xn−j−a+2. Thus if D chooses some action xk ∈ [xn/2−a+1, xn/2], then D wins with

probability no greater than n−j−a+1
2n

if A uses the strategy σA.

From this we see that if j−a
n

> n−j−a+1
2n

or 3j > n + a + 1 or j > n+a+1
3

, then D obtains a greater

payoff by choosing the action xj−a than by choosing some action xk ∈ [xn/2−a+1, xn/2]. But we have

seen that j
n

> n+a+2
3n

and thus j > n+a+1
3

. Thus it is not a best response for D to choose some

action xk ∈ [xn/2−a+1, xn/2] when A uses the strategy σA. From this it follows that if xk ≤ xn/2 is a

best response for D to σA, then xk ∈ [xj−a, xn/2−a]. Similar reasoning shows that if xk ≥ xn/2+1 is

a best response for D to σA, then xk ∈ [xn/2+1+a, xn−j+1+a].

Thus if A uses the strategy σA, then any best response for D will only choose actions in either

[xj−a, xn/2−a] or [xn/2+1+a, xn−j+1+a] with positive probability. Now I seek to show that if D is using

some such strategy, σD, then A could obtain a higher payoff by choosing some action from xj−1 or

xn−j+2 than by choosing the action xn/2.

Note that if A chooses the action xn/2 and D chooses some action in [xj−a, xn/2−a], then D wins

with probability at least j−a
n

because voters with ideal points xi ≤ xj−a always prefer candidate D

to candidate A. And if A chooses the action xn/2 and D chooses some action in [xn/2+1+a, xn−j+1+a],

then D wins with probability at least j−a
n

because voters with ideal points xi ≥ xn−j+1+a always

prefer candidate D to candidate A. Thus if A chooses the action xn/2 and D uses the strategy σD,

then A wins with probability no greater than n−j+a
n

.

By contrast, if A chooses the action xj−1 and D chooses some action in [xj−a, xn/2−a], then A

wins with probability 1: Since j
n

> n−2a+2
2n

, we have j > n
2
− a + 1 and j − 1 > n

2
− a, so xj−1 is

within a − 1 grid points of all policies in [xj−a, xn/2−a]. And if A chooses the action xj−1 and D
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chooses some action in [xn/2+1+a, xn−j+1+a], then A wins with probability at least j+a−2
n

because

voters with ideal points xi ≤ xj+a−2 always prefer candidate A to candidate D. Thus if π denotes

the probability with which σD chooses an action in [xj−a, xn/2−a], then A wins with probability at

least π + (1− π) j+a−2
n

if A chooses the action xj−1 and D uses the strategy σD. Similar reasoning

shows that A wins with probability at least 1− π + π( j+a−2
n

) if A chooses the action xn−j+2 and D

uses the strategy σD.

Now if π ≥ 1
2
, then π + (1− π) j+a−2

n
≥ n+j+a−2

2n
. And if π < 1

2
, then 1− π + π( j+a−2

n
) ≥ n+j+a−2

2n
.

Thus if D uses the strategy σD, then A can win with probability at least n+j+a−2
2n

by choosing some

action from xj−1 or xn−j+2. Thus if n+j+a−2
2n

> n−j+a
n

or 3j > n+a+2 or j > n+a+2
3

, then A can win

with greater probability by choosing some action from xj−1 or xn−j+2 than by choosing the action

xn/2. But since j
n

> n+a+2
3n

, we have j > n+a+2
3

. Thus xn/2 is not a best response for A to σD.

Now we know from Theorem 3 that if (σA, σD) is an equilibrium, then xn/2 must be a best response

for A to σD. Thus from the previous paragraph we know that (σA, σD) is not an equilibrium if σD

is a strategy which only chooses actions in either [xj−a, xn/2−a] or [xn/2+1+a, xn−j+1+a] with positive

probability. But we have also seen that any best response for D to σA must only choose actions in

[xj−a, xn/2−a] or [xn/2+1+a, xn−j+1+a] with positive probability. Thus there is no equilibrium in which

A uses the strategy σA, and lim supn→∞ x(n, δ) = ∆ cannot hold for any ∆ ∈ (max{1+δ
3

, 1
2
− δ}, 1

2
].

Thus lim supn→∞ x(n, δ) ≤ max{1+δ
3

, 1
2
− δ}.

¤

Theorem 8. The probability the advantaged candidate wins the election is at least 1
2

+ a
n
.

Proof. Suppose A uses the strategy σn/2. Note that if A uses this strategy, then the action xn/2−a

is a best response for D to A’s strategy: We know from Lemma 2(a) that D’s expected payoff

from taking the action xn/2−a is strictly greater than D’s expected payoff from taking the action

xk for all k < n
2
− a. We also know that if D takes an action xk with n

2
− a + 2 ≤ k ≤ n

2
,

then D loses with certainty. Finally, if D takes the action xn/2−a+1, then D’s expected payoff is

1
2
(πD(xn/2, xn/2−a+1) + πD(xn/2+1, xn/2−a+1)) = 1

2
(0 + n/2−a+1

n
) = n/2−a+1

2n
. But if D takes the action

xn/2−a, then D’s expected payoff is 1
2
(πD(xn/2, xn/2−a) + πD(xn/2+1, xn/2−a)) = 1

2
(n/2−a

n
+ n/2−a

n
) =

n/2−a
n

. And since n
2
− a ≥ 1, we have n

2
− a + 1 ≤ 2(n

2
− a) and n/2−a+1

2n
≤ n/2−a

n
. Thus D’s expected

payoff from taking the action xn/2−a is at least as large as D’s expected payoff from taking the

action xn/2−a+1.
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From this it follows that D’s expected payoff from taking the action xn/2−a is at least as large as

D’s expected payoff from taking any other action xk with k ≤ n
2
. But we know that D’s expected

payoff from taking an action xk with k ≤ n
2

is the same as D’s expected payoff from taking an

xn−k+1 with k ≤ n
2
. Thus it follows that D’s expected payoff from taking the action xn/2−a is at

least as high as D’s expected payoff from taking any other action xk.

Now we have seen in the first paragraph that D’s expected payoff from taking the action xn/2−a

is n/2−a
n

. Thus if A uses the strategy σn/2, then D wins with probability no greater than n/2−a
n

. But

this means that A can guarantee that A will win with probability equal to at least 1− n/2−a
n

= 1
2
+ a

n

by using the strategy σn/2. Thus the probability the advantaged candidate wins the election is at

least 1
2

+ a
n
.

¤
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