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Abstract

Building on evidence from neurobiology and neuroscience, we model the physiological lim-
itations faced by individuals in the process of decision-making that starts with sensory
perception and ends in action selection. The brain sets a mneuronal threshold, observes
whether the neuronal cell firing activity reaches the threshold or not, and takes the optimal
action conditional on that (limited) information. We show that the optimal threshold is
set in a way that existing beliefs are likely to be confirmed. The conclusion holds in static
and dynamic settings, and with linear and quadratic loss functions. We then relate our
result to the somatic marker theory, and argue that it provides support for the hypothe-
sis that emotions help decision-making. Last, we discuss the implications for choices in
concrete vs. abstract situations, for interactions in cooperative vs. competitive activities,
for reactions to expected vs. unexpected events, and for the choice of cognitive vs. affective
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1 Introduction

Economic theory has traditionally been interested in the analysis of choices. In particular
and with some exceptions (Bernheim and Rangel, 2004), the processes by which individ-
uals reach decisions have been overlooked, mainly because we had little knowledge of the
pathways going from perception to action. With the development of increasingly sophisti-
cated designs and techniques to measure brain activity, the neurobiology and neuroscience
literatures have substantially improved our understanding of the biological mechanisms
that transform sensory perceptions into voluntary actions. These results can now be in-
corporated into formal economic models of decision-making.

Building theoretical models of brain processes is an important step both for economics
and neuroscience. For economics, incorporating physiological costs and constraints in the
capacity of individuals to evaluate situations, process information and reach conclusions
has two advantages. First, it provides guidelines on which assumptions seem most plausible
when we try and model “bounded rationality.” Second, it can help provide microfounda-
tions for some well-documented errors and biases in choices (see Brocas and Carrillo (2008)
for a more detailed exposition of these arguments).! For neuroscience, formal models of the
brain can provide testable implications about the functionality of different brain systems
and their interactions in decision-making.

Since our theory builds on literatures that, in principle, are distant from economics,
we start with a brief overview of the recent research relevant for our study.

1.1 Some background from the brain sciences
The basic premises for our theory come from two overlapping literatures.

1. Neurobiology. Researchers in neurobiology have studied the neural mechanisms un-
derlying the transformation of sensory signals into decisions. One of the early theories, the
“Efficient Coding Hypothesis” postulates that neurons encode information as compactly
as possible, so as to use resources efficiently (Barlow (2001), Simoncelli (2003)). This the-
ory has recently led to a myriad of sophisticated statistical models that describe bayesian
stochastic processing of information by neurons in visual, auditory and haptic perception
tasks (see e.g. Schwartz and Simoncelli (2001), Ernst and Banks (2002), Koérding and
Wolpert (2004) and Ma et al. (2006)).

1One could draw a parallel with the theory of organizations, where a more accurate modelling of
organizational constraints (agency problems, restricted information channels, limited resources) has helped
understanding the tendency of organizations to take certain decisions and avoid some others.



In a classical study, Hanes and Schall (1996) use single cell recording to analyze the
neural processes responsible for the duration and variability of reaction times in monkeys.
The authors find that movements are initiated when neural activity reaches a certain
threshold activation level, in a winner-takes-all type of contest.? Also, stochastic variabil-
ity in cell firing rates is responsible for the observed differences in reaction times. Building
on this work, Shadlen et al. (1996) and Gold and Shadlen (2001) study a motion discrimi-
nation task, where monkeys must decide whether the net direction of dots that appear on
a monitor is upward or downward. The authors develop a theory of how information is
processed. Neurons “compute” approximately the log-likelihood ratio of the alternatives
in order to determine which hypothesis should be supported by the evidence. Thus, ac-
cording to this result, neurons incorporate the two major ingredients of bayesian theory:
prior probabilities, and stochastic information processing (see also Deneve et al. (1999)
for a numerical simulation model).

The work by Shadlen et al. (1996) has led other researchers to study whether neural
circuits have a similar way to encode information in more complex situations. Ditterich
et al. (2003) show that when the task is more difficult (fewer dots move in synchrony),
monkeys make more mistakes, a result also consistent with a stochastic information accu-
mulation theory. Also, using fMRI studies, Heekeren et al. (2004) find that the mechanism
by which the brain of a monkey computes perceptual decisions is also at work for humans
and for more sophisticated choices, such as image recognition. Last, Platt and Glimcher
(1999) demonstrate that neurons react not only to probabilities of gains (as already dis-
cussed) but also to magnitudes of gains, hence computing approximately the “expected
value” associated to each alternative (see also Glimcher et al. (2005) and the review by
Glimcher and Rustichini (2004)).

2. Affective neuroscience. The increased interest during the 1990s in understanding
the neural basis of emotions led to the development of a new subdiscipline called “affective
neuroscience” (Davidson and Sutton, 1995). Numerous studies using both PET scan and
fMRI techniques have been conducted on different emotions and reached two general
conclusions. First, emotions are crucial for decision-making, as they guide actions towards
salient goals (Davidson and Irwin, 1999). Second, abnormalities in the functioning of some
brain regions are responsible for emotional disorders, including social phobias (Reiman,

1997) and depression (Drevets et al., 1997). These pathologies result in poor choices.?

2Nichols and Newsome (2002) provide a further analysis of the type of situations where information
processing is likely to follow a winner-takes-all vs. a vector averaging pattern.

3The primary goal in most of these studies is not so much to discuss these well-established facts but,
instead, to identify the brain circuitry behind each particular emotion or emotion disorder. These details,
however, are less crucial for the purpose of our study.



In his review of the brain areas involved in reward processing, Schultz (2000) concludes
that neurons adapt their activity according to ongoing experiences. Of special importance
are neurons in the orbitofrontal cortex (Tremblay and Schultz, 2000), an area that plays
a major function in the experience of emotions. Inspired by this research, and in many
cases preceding it, Damasio (1994) developed the “somatic marker hypothesis”, a neural
theory that rests on two ingredients. First, emotions affect decisions by modifying neuronal
thresholds in a precise direction: the individual becomes more receptive to information
that supports current beliefs and less receptive to information that contradicts current
beliefs. As summarized by Bechara and Damasio (2005):

[P]re-existing somatic states influence the threshold of neuronal cell firing in
trigger structures (e.g., VM cortex) so that subsequent somatic states from
thoughts (secondary inducers) are triggered more or less easily. [...] While
pre-existing negative somatic states reinforce subsequent negative states, they
may impede the effectiveness of positive ones. Similarly, pre-existing positive
states reinforce positive states, but they may impede negative ones (p.363-4).

Second, this threshold modification induced by somatic dispositions improves decision-
making. Again, in the words of Bechara and Damasio (2005):

These somatic states are indeed beneficial, because they consciously or non-
consciously bias the decision in an advantageous manner (p. 351, italics added).

Rustichini et al. (2005) provide further evidence that the emotional circuitry is active
in the task of processing information. In our view, one weakness of the somatic marker
theory is that it does not explain why a modification in that direction is beneficial. One
objective of our paper is to build a formal framework that can address this issue.

1.2 Implications for decision-making and overview of the results

According to the neurobiology literature reviewed above, there are three basic principles in
the physiological mechanism of information processing. First, neurons carry information
from the sensory to the decision-making system, using an imperfect encoding technology:
the level of neuronal cell firing depends stochastically on the information obtained. Sec-
ond, the motor cortex triggers an action whenever the cell firing activity in favor of one
alternative reaches a certain threshold. Third, the individual has the ability to modify the
triggering threshold. By acting on the threshold, the individual affects the likelihood of

interpreting evidence for and against each option.



Assume now that the brain has been developed in a way that it optimizes the acquisi-
tion of information, in order to take the best possible action.* Due to the biological con-
straints described above, it is only able to choose a neuronal threshold and learn whether
it is reached or not. The first objective of our study is to find the optimal threshold.
That is, we determine what is the best way to process information given the documented
physiological limitations, and then discuss its implications for decision-making. We study
how the thresholds vary over time, across activities, under different priors, and for differ-
ent objectives. Finally, we analyze the effect on choices of an impairment in the capacity
of an individual to modulate thresholds. The second (complementary) objective of the
paper is to relate our findings to somatic dispositions. According to the affective neuro-
science literature also reviewed above, emotions play an important role in the regulation
of neuronal activity.® The somatic marker theory goes one step beyond in arguing that:
(i) emotions operate on neuronal thresholds, (ii) they modify thresholds in a way that
existing beliefs are likely to be confirmed, and (iii) this modulation of thresholds improves
decision-making. However, it does not provide a compelling argument for the optimality
of this threshold modulation. Since our model determines the optimal threshold, it is
equipped to discuss whether and why the threshold modifications postulated by the so-
matic marker theory are beneficial. In other words, if we accept (i) and (ii) as a premise,
our model can determine whether (iii) is indeed its logical consequence.

To formalize the neurobiological principles described above, we consider a simple model
with two states, A and B. We assume that cell firing stochastically depends on the state,
with high cell firing being more likely in state A and low cell firing in state B. The brain
sets a threshold and determines only whether the cell firing surpasses it or not. Given
the information obtained, an action is undertaken. Payoffs depend on the combination of
action and state. The first and probably less surprising contribution of the paper is to show
that the threshold is optimally set in a way that beliefs are likely to be supported. That
is, if the agent becomes more confident that the state is A, the threshold is decreased.
Thus, the new threshold is more likely to be surpassed whether the state is indeed A
or not and, as a result, the agent is more likely to take the action which is optimal in
that state but suboptimal in the other (Proposition 1). The logic for this property is
simple. As the likelihood of A increases, stronger contradictory information is required to
reverse that belief. From standard Bayesian theory, we know that stronger information

4Optimization in this context is a working assumption which may be defended on evolutionary grounds.
It is obviously debatable. However, we feel that any other assumption would have been less satisfactory.

5As documented in psychology and acknowledged in neuroscience, emotions affect behavior in many
other ways. To better focus the discussion, here we concentrate on its biological role and ignore the other
components.



towards state B can only be obtained if a lower threshold is not reached, hence the
result. This result matches the findings obtained in the classical theory of organizations
literature (Calvert (1985), Sah and Stiglitz (1986), Meyer (1991)) using related models.
Importantly, this simple result generalizes in a number of dimensions, such as different
payoff formulations (e.g., linear and quadratic loss functions) and a continuum of states.
Under some conditions, it also holds when multiple thresholds can be set sequentially,
which implies that the ability to modify neuronal thresholds has a snowball effect on
decision-making: a stronger belief towards one state implies a greater threshold variation
in its favor, therefore a higher probability that new information supports it, and so on
(Propositions 2 to 6).

The second contribution is more directly tied to the neurobiology of emotions and the
somatic marker theory. According to Bechara and Damasio (2005), the role of emotions
is to act on neuronal thresholds by rendering the individual relatively more receptive
to information that supports current beliefs. If we accept this as a premise, then our
previous results demonstrate that the somatic marker’s claim —mnamely, that emotions
improve decisions— is indeed correct. In other words, a person with an emotional deficit will
not modulate thresholds in this direction and, as a result, will take suboptimal actions more
frequently. Furthermore, the effect of emotions on thresholds is all the more important
in dynamic settings: as time passes, emotionally balanced individuals are most likely to
maintain the beliefs initially favored (Corollaries 1 and 2).

The third contribution is to connect more tightly the economic model with the neu-
roscience evidence, and discuss some comparative statics and implications of the theory.
We show that the limited ability of the individual to process information does not pre-
vent efficient decision-making if the environment is static and there are only two relevant
alternatives, which we label as “basic” situations. We also argue that cognitive encoding
channels with multiple thresholds are relatively more valuable in complex environments
whereas affective encoding channels with one or few thresholds are more appropriate in
simple environments (Propositions 7 and 8). As for the implications, we prove that opti-
mal thresholds are more sensitive to initial beliefs the weaker the correlation between state
and cell firing. This suggests that threshold modulation is most important in activities
where information is subjective and difficult to interpret, an argument that has received
support in experimental neuroscience. We also show that thresholds are more sensitive to
beliefs when agents benefit if their peers also take the correct action (positive externali-
ties) than when they benefit if they alone take the correct action (negative externalities).
Thus, optimal threshold modulation seems more important in cooperative environments
than in competitive ones. Last, we highlight the importance of the correlation between



action and payoff when discussing the reaction of individuals to expected and unexpected
events. If the correlation is high, an agent who sets thresholds optimally will exhibit a
low (positive) reaction to success and high (negative) reaction to failures, as emphasized
in the neuroscience literature. However, if the correlation is weak, that agent understands
the importance of luck on outcomes and has a low reaction to both successes and failures.
(Propositions 9 to 11).

1.3 Related literature

The existing neuroeconomic literature that models the interplay between reason and
emotion (Bernheim and Rangel (2004), Benhabib and Bisin (2005), Loewenstein and
O’Donoghue (2005)) assumes competition between a rational / cognitive system and an
impulsive / affective system as well as a specific cost-benefit tradeoff between the two
(see Zak (2004) or Camerer et al. (2005) for reviews).® Our work departs substantially
from this literature in that we do not presuppose any tradeoff between reason and emo-
tion. In fact, we do not even assume separation and competition between cognitive and
affective systems. Instead, we propose a more primitive model that incorporates the phys-
iological constraints faced by the brain in the decision-making process, and discuss the
role of emotions in this constrained optimization problem. Since we focus on the physi-
ological mechanisms behind the choice process, our paper is closer to the “physiological
expected utility” theory developed by Glimcher et al. (2005).7 It is worth noting that
the dichotomy between rational/cognitive and automatic/affective systems has been very
successful in neuroeconomic circles, mainly because it captures in a parsimonious way the
tension between reason and passion. However, it should also be acknowledged that most
neuroscientists strongly disagree with a literal interpretation of this dichotomy. According
to Glimcher et al. (2005, p. 251-2): “[T]here is no evidence that hidden inside the brain are
two fully independent systems, one rational and one irrational. [...] What we cannot stress
strongly enough is that the vast majority of evolutionary biologists and neurobiologists
reject this view.” Similarly, Phelps (2006, p.27) argues “that the classic division between
emotion and cognition may be unrealistic and that an understanding of human cognition

Brocas and Carrillo (2007) and Fudenberg and Levine (2006, 2007) adopt the model by Thaler and
Shefrin (1981), where the two competing systems have different temporal horizons. In those works, the
myopic system is not necessarily irrational; it simply has a different (in this case, more immediate) objective.
There is also a literature where the individual makes choices anticipating that emotions —fear, anxiety or
rejoicing— affect utility (Caplin and Leahy (2001), Palacios-Huerta (2004)) and some other works where
the individual has imperfect self-knowledge resulting in other types of intrapersonal conflicts (Carrillo and
Mariotti (2000), Benabou and Tirole (2002, 2004), Bodner and Prelec (2003)).

"There is also a literature that explores the neurobiological foundations for social behavior. Again,
it analyzes the problem from an experimental viewpoint (see for e.g., Zak et al. (2004) on the effect of
oxytocin on trust).



requires the consideration of emotion.”® There is no doubt that the metaphor is adopted
mainly for modelling purposes, and therefore can be a reasonable first approximation in
many contexts. Nonetheless, the objections raised by neuroscientists suggest that it can
be complementary and interesting to explore other ways (maybe more directly connected
to evidence from the brain sciences) to model and understand the role of emotions on
decision-making. The present paper offers such an alternative approach.

Finally, there are several areas outside economics that study a related problem, al-
though from a different angle. First, there is a literature on information processing that
adopts a purely statistical approach. Neurobiologists have worked on complex statistical
algorithms that mimic what neurons in the brain do (see the references in section 1.1).
Theoretical neuroscientists have constructed mathematical and computational models of
the brain based on the underlying biological mechanisms (see Dayan and Abbott (2005)
for an introduction). Psychophysicists have developed a “signal-detection theory” to study
the likelihood of finding a weak signal in a noisy environment, depending on the statistical
properties of the noise and signal random variables (see McNicol (1972) or Wickens (2002)
for an introduction). Second, there is also a literature on neural networks and artificial
intelligence which builds models inspired by the architecture of the brain in order to solve
specific tasks like data processing or filtering (see Abdi (1996) for a review).

2 A model of neuronal cell firing activity

2.1 The brain: a constrained processor of information

An individual (he) obtain some evidence and takes an action. His objective is to process the
information as efficiently as possible, given the physiological limitations of his brain. As re-
viewed above, the neurobiology literature highlights three key aspects of signal processing.
First, information is scarce and imperfect: neuronal cell firing is stochastically correlated
with the state. Second, the brain can only determine whether the neuronal cell firing activ-
ity surpasses a given threshold or not. Third, the brain (and, more specifically, the soma
according to the somatic marker theory) has the ability to choose the neuronal threshold.

To understand the effects of this limited capacity to process information, we consider
a basic choice situation. The individual must decide how far from the cave to go hunting.
There are two states, S € {A, B}: leaving the cave is either dangerous (A) or safe (B), and
the individual assigns probability p € (0, 1) to state A. We denote by v € [0, 1] the action,
where lower values of v denote going farther away from the cave to hunt. The payoff of

8See also LeDoux (1996, ch. 4) for an non-technical, historical perspective of the misconceptions about
the physical location of functions in the brain.



the individual is w4 l(y — 1) if S = A and 7pl(y — 0) if S = B, where (z) = [(—z) for
all z and I'(z) < 0 for all z > 0. Thus, if hunting is dangerous (S = A), the individual
should stay as close as possible to the cave (7 = 1), since each mile traveled increases the
probability of encountering a predator. If hunting is safe (S = B), then he should go as
far away as possible to find the best preys (7 = 0).? Note that mg captures the marginal
cost of taking a wrong action given that the true state. So, m4 > mp would reflect the
idea that hunting on a dangerous day is more costly than staying in the cave on a safe
day. Given a belief p, the expected payoff function that the individual maximizes is:

L(vip) =p |rally = )| + (1= p) [751(7)] &

Before making his choice, the individual takes one step out of the cave and looks outside.
The information transmitted by the sensory system is modeled in a way to incorporate
the three premises reviewed above. First, neuronal cell firing c¢ is stochastic and depends
on the state. Formally, the likelihood of a cell firing level ¢ € [0,1] is g(c) if the state is
A and f(c) if the state is B, with G(c) = [ g(y)dy and F(c) = [; f(y)dy representing
the probability of a cell firing activity not greater than ¢ when the state is A and B,
respectively. Furthermore, high cell firing is relatively more likely when S = A and low
cell firing is relatively more likely when S = B. Said differently, on dangerous days there
are stochastically more neurons in the amygdala carrying a message of fear to the brain
than on safe days. Formally, the functions g(-) and f(-) satisfy the standard Monotone
Likelihood Ratio Property (MLRP):!0

/
Assumption 1 (MLRP) (chég) < 0 for all c. (A1)
This assumption states that the probability of state B (hunting is safe) rather than A
(hunting is dangerous) monotonically decreases with the level of cell firing. In other
words, an increase in the number of neurotransmitters carrying the signal “fear” indicates
a higher likelihood that a predator is present. Figure 1 provides a graphical representation
of cell firing probabilities for symmetric functions f(-) and g(-).

9We deliberately chose an example encountered by a primitive individual because it illustrates reason-
ably well evolutionary relevant situations. For current applications, it makes more sense to think of the
states as investment A or B being most profitable, relationship A or B being more gratifying, etc.

'OMLRP implies: (i) <=2 > 1576 (1) 9 < £ and (i) G(c) < F(e) ¥ c € (0,1).
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Figure 1. Stochastic cell firing level.

Second, the brain can only determine whether the neuronal activity is above or below
a threshold x. This means that, for any given threshold x, a cell firing activity above
it will suggest (more or less strongly) that S = A, whereas a cell firing activity below it
will indicate (more or less strongly) that S = B. Third, we allow the brain to modify the
threshold, that is, to select x. In the next section, we determine how the threshold should
be set in order to optimize learning.

The timing of the game can thus be summarized as follows. In stage 0, nature picks
a state S € {A, B}. In stage 1, the brain sets a threshold = € (0,1), there is neuronal
activity ¢ € [0,1], and the brain determines whether the cutoff is reached or not (¢ 2 x).
In stage 2, the individual updates his beliefs and chooses an action v € [0, 1]. Final payoffs
depend on the action v and the state S. Figure 2 depicts this sequence of events.

nature picks x €(0,1) cell firing ~v € [0,1] payoff
° . ° ° . -
S € {A, B} brain sets czz action L(v|S)
\ I L I L |
stage 0 stage 1 stage 2

Figure 2. Timing.

2.2 Optimal cell firing threshold

Our first objective is to determine the optimal threshold. We solve this game by backward
induction. In stage 2, the optimal action depends on the shape of the payoff I(-). We



first assume that [(2) is weakly convex on both sides of its bliss point z = 0: I"”(2) > 0
for all z, so that departures from the optimal action are decreasingly costly. A special
case of this class of functions is the linear loss function [(z) = —|z|. Note that when
[(z) is weakly convex, then the expected payoff function, L(v;p), is weakly convex in
v and differentiable in (0, 1), so corner solutions are optimal. If we denote by v*(p) =
argmax~ L(v;p), necessary and sufficient conditions for v*(p) = 1 and v*(p) = 0 are,
respectively, L(1;p) > L(0;p) and L(0;p) > L(1;p). Using (1) and given that [(0) > I(1),
we have:

5 and Y (p)=0 if p<p*= UL

* =11if p>p*=——ro _—
7(p) p=p TA+ TR TA+TB

Not surprisingly, if the marginal cost of an incorrect action in a given state increases, then
the individual is more willing to take the action optimal in that state even at the increased
risk of erring in the other state. Formally, dp*/dn4 < 0 and dp*/dmwpg > 0. In our example,
as predators become smarter and more dangerous, the individual is more likely to decide
to stay in the cave, even on days that are apparently safe.

In stage 1, the threshold z is selected. Before proceeding, three properties must be
noted. First, for any p and z, the belief about state A is revised upwards if x is surpassed
and downwards if x is not reached:

_ p(1—G(x)) 2

p(x)=Pr(Alec>z) = > p Vp,xe (0,1 2

W=pdle=a = i GE) + (0 -p - F@) o @
pG(z)

p(z) =Pr(Alc<z) = D G@ + (=)@ <p Vp, z € (0,1)2 (3)

It captures the idea that low cell firing is an (imperfect) indicator of state B and high cell
firing an (imperfect) indicator of state A. Second, a necessary condition for a threshold
x to be optimal is that it must prescribe different actions depending on whether ¢ 2 «x,
otherwise stage 1 would be uninformative. Third, when evaluating the likelihood of A,
surpassing a stringent cutoff is more unlikely than surpassing a weak cutoff, but it is also
a stronger indicator that this state is correct: dPr(A|c > x)/dz > 0. Also, not reaching
a stringent cutoff is more likely than not reaching a weak cutoff, but it is also a weaker
indicator that this state is incorrect: dPr(A|c < x)/dz > 0. A similar argument holds
for state B. This property captures the negative relation in Bayesian learning contexts
between likelihood and impact of information.

Properties one and two imply that the individual will set a threshold x such that v* = 1
if the threshold is exceeded and v* = 0 if the threshold is not met. Together with property

10



three, it means that the optimal threshold maximizes the following value function:
V(x;p) = Pr(ec>x) L(1;p(x)) + Pr(c < x) L(0; p(x))

4
pral (L= GE)UO) + G@)UL)| + (1= p) 75 | (1 = F@)I(1) + F(@)i(0)] o

Denote by z*(p) = argmax, V(z;p) the optimal threshold as a function of the belief
& > _p mA > f() 11

p, and assume that the parameters of the model are such that 4(0)

Our first result is the following.

Proposition 1 When I"(2) > 0, the optimal threshold x*(p) is unique and given by:

fl@*(p) _ p ma
g(z*(p)) 1-p 7B

(5)
which, in particular, implies that dz*/dp < 0.

Consider two individuals who differ only in their belief about the likelihood of state
A. According to Proposition 1, the individual with strongest prior in favor of A sets the
lowest threshold. As a result, he is more likely to receive evidence that endorses A and less
likely to receive evidence that endorses B than the other agent, both if the true state is A
and if the true state is B. In other words, the ability to set optimal thresholds increases
the likelihood that an individual be reaffirmed in his belief.

This result is due to the trade-off between the likelihood of information and its impact.
To see this, suppose that the individual believes that A is more likely than B and, conse-
quently, prefers to choose action v = 1 given his current prior. Assume also that he sets a
high threshold. If the threshold is surpassed, he will be extremely confident that the state
is A, whereas if the threshold is not reached, he will be only moderately convinced about
state B. In both cases, his posterior belief hinges towards A, and he takes the same action
he would have taken without this information. Suppose instead that the individual sets
a low threshold. If the threshold is surpassed, he will slightly increase his confidence in
state A, whereas if the threshold is not reached, he will become quite convinced that the
state is B. The individual ends up taking different actions and, in both cases, he is quite
confident about his choice. Overall, the optimal threshold must balance the belief in favor
of A conditional on the threshold being surpassed and the belief in favor of B conditional
on the threshold not being reached. In order to achieve this balance, the threshold should
be low whenever A is a priori more probable than B In other words, when one state is a
priori more likely than the other, the individual will require strong information against it
to change his beliefs.

1 This condition ensures that the optimal solution is interior.
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Notice that (A1) ensures the uniqueness of the local (hence, global) maximum. If,
instead, we assumed stochastic dominance (a substantially weaker condition than (A1)
formally defined as F(c) > G(c) for all ¢), z* would not necessarily be unique. And
yet, since V (z;p) is always submodular, the monotonic relation between threshold and
likelihood of state, dz*/dp < 0, would be preserved in all the local maxima.'? Finally,
note that the threshold is set in such a way that, in equilibrium, the most costly mistakes
are most likely to be avoided: dz*/dma < 0 and dz*/dmp > 0.

2.3 The role of emotions

The model presented so far relies exclusively on our three neurobiological premises. Ac-
cording to the somatic marker theory (Bechara and Damasio, 2005), there is a tight
physiological link between these findings and the somatic dispositions of individuals (see
also the consistent findings of Rustichini et al. (2005)). More precisely, the soma modifies
the neuronal threshold by increasing the likelihood of interpreting evidence in favor of
the currently supported hypothesis. They also conclude that this threshold modulation is
beneficial for decision-making. Our model clarifies this issue.

Corollary 1 If we accept as a premise that somatic dispositions play the biological role
described in the somatic marker theory, then emotions do improve decision-making.

Proposition 1 states that it is optimal to set a threshold so that the likelihood of
confirming a belief is greater the stronger the prior in its favor. The somatic marker
theory argues that emotions affect the threshold in that precise direction. Corollary 1
simply puts these two results together to prove that the somatic marker’s claim regarding
the desirability of favoring the current belief is correct. Conversely, consider an individual
with an abnormal activation of somatic signals who sets the threshold independently of his
belief (dz*/dp = 0) or who is most receptive to information that contradicts his current
belief (dz*/dp > 0). According to our theory, this person will make suboptimal choices
more frequently. Needless to say, the model does not argue that the soma is an intelligent
system that performs the sophisticated trade-off described in Proposition 1. It simply
suggests that the development through evolution of a biological mechanism (in this case,
governed by emotions) with these qualitative properties is indeed “advantageous.”

3 Optimal threshold in other environments

The model presented in section 2 makes a number of simplifying assumptions. It is only
natural to discuss whether the properties of the mechanism hold in more general settings.

12We thank Guofu Tan for pointing this out.
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In this section, we extend the model in a number of directions: a concave payoff function
(section 3.1), a continuum of states (section 3.2), and two stages of cell firing (section 3.3).

To avoid unnecessary complications, we assume without loss of generality 74 = 7 = 1.

3.1 Increasingly costly departures from the optimal action

Suppose that hunting is increasingly dangerous as the individual travels farther away from
the cave. This situation can be formalized with a strictly concave, continuous and twice-
differentiable payoff function: {”(z) < 0 for all z and I'(0) = 0. Denote by v**(p) =
argmax~ L(v;p). Taking the first-order condition in (1), we have:

'™ () _ p
V(1—~v=(p) 1-p

Note that LLgﬁp) = —pl'(1) > 0, LLgy;p) = (1-p)l'(1) <0, and Lg(?p) < 0.
Y ~=0 Y ~v=1 Y

Thus, contrary to the previous case, extreme choices are never optimal when departures

(6)

are increasingly costly: v**(p) € (0, 1) for all p € (0,1). Furthermore:

dv**(p) _ °L(v;p) / ,
= — 1 — —
dp x OyOp '(1=~)=1(y)>0

This means that, as the likelihood of danger increases, the individual decides to stay closer

to the cave. Suppose the brain sets a threshold z. Given (2), (3) and (6), the optimal
actions when ¢ > x and ¢ < x are, respectively:

M) B p 1-G( .
(1 —~(p(x))) 1-p(x) 1-pl-F(z)
e A R .
(1=~ (p(x))) 1—p(x) 1-p F(x)
where v**(p(x)) > v**(p(x)). Differentiating (7) and (8) and using (A1), we obtain:
DUEE) g ETE@) o

dx dx
According to (9), the individual reacts to an increase in the threshold by choosing always
a higher action. Indeed, if the higher threshold is surpassed, then the evidence in favor of
state A is stronger. Conversely, if the higher threshold is not reached, then the evidence
in favor of B is weaker. In both cases, higher actions follow. We can now define the value
function of the individual. Adapting (4) to the present case, we get:

(
V(z;p) = Pr(c> ) L(y™(p(x)); p(x)) + Pr(c < ) Ly (p(x)); p(x))
= p(1 = G@)I(L =7 (p(x))) + (1 = p)(1 = F(2))l(v(p(x))) (10)
7 (

+p G(2) (1 =7 (p(2))) + (1 = p)F(2) Ly (p(2)))
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To solve this value function, we first need to introduce a strengthened version of MLRP:

. c c o) 1-G(e) )’ PECOAY
Assumption 2 (s-MLRP) i > 205, (L91=49) <o, (1449) <0 (a2)

Note that the first and second or the first and third parts in (A2) imply (A1), but
the converse is not true. Denote by z**(p) = argmax, V(x;p). The optimal threshold
maximizes (10) given (7) and (8). The first-order condition is:

OV (x;p) _ fa)  p =7 (eE™))) — 11— (p(e™)))
L PR gl=)  1—p Uy (p(e™))) = Ly (p(z*)))

(11)

and we can now state our next result.

Proposition 2 Under (A2) and when I"(z) < 0, a sufficient condition to have a unique
optimal threshold x** given by (11) and such that dx**/dp < 0 is:

@
dz
Under (A1), condition (C1) guarantees dz**/dp < 0 in every locally optimal threshold

Fa)l(v" (p(x)) + (1 = F(x))l(v**(ﬁ(fﬁ)))] >0 (C1)

T=x**

but not uniqueness.

When departures from the optimal action are increasingly costly, the quasi-concavity
of the value function V(x;p) is not guaranteed for generic values of the densities and
payoff functions f(-), g(-) and I(-). In fact, there are two countervailing forces at play
when choosing x. First, a higher threshold is less likely to be surpassed and therefore
more likely to induce the low action. Second, either outcome is a weaker indicator that
the state is B. Therefore, the final action will be higher both when the threshold is
surpassed and when it is not reached. Proposition 2 provides a sufficient condition, (C1),
such that V(-) is well-behaved. The interpretation of this condition is simple: starting
from the optimal threshold, setting a higher x increases the payoff of the individual if
and only if the state is B. In other words, as x increases, the direct effect of increasing
the likelihood of choosing the low action must dominate the indirect effect of choosing
relatively higher actions. It is also clear why the condition is automatically satisfied when
payoffs are weakly convex: since only v* = 0 or v* = 1 are optimal, a marginal change in
the threshold does not affect the choice of action (indirect effect) but it does change the
likelihood of surpassing it (direct effect).

In order to provide a full characterization of the equilibrium, we will now restrict
attention to quadratic payoffs, I(z) = a — 32% with 8 > 0. Under this restriction, the
optimal action coincides with the belief of the individual. Formally, (7) and (8) become:

77 (p(x)) =p(z) and " (p(x)) = p(x) (12)
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Replacing (12) into (11), we obtain the following result.

Proposition 3 Under (A2) and with quadratic payoffs, the optimal threshold x** is
unique, it satisfies dx** /dp < 0, and it solves:

fla=) _ p (A=p™))+ (1 - pa™))
glz™=)  1-p p(a**) + p(a**)

(13)

Under (A1), there might be multiple locally optimal thresholds, but they all satisfy
dz** /dp < 0.

The main conclusion in Proposition 1 is that thresholds are set in such a way that
existing beliefs are likely to be reaffirmed. According to Propositions 2 and 3, the result
extends to quadratic payoffs. It also extends to other concave loss functions as long as (C1)
is satisfied. It is important to notice that the results are consistent with the experimental
evidence according to which individuals can and often do generate reports of beliefs that
vary continuously. Indeed, the ability to perform marginal changes in thresholds results
in continuous changes in expected beliefs, both when these are surpassed and when they
are not. Furthermore, under concave loss functions, these continuous changes in beliefs
imply also continuous changes in reports. The following example illustrates some other
properties of the equilibrium.

Example 1. Suppose that the cell firing distribution functions are G(c) = ¢ and F(c) = c.
From (5) and (13) and after some algebra, the optimal thresholds with linear (I(z) = —|z|)
and quadratic (I(z) = —z?) payoffs are respectively:

Vi-p

) =5 and 270) = AT

where z* and x** are interior if p > 1/3. In this example, the optimal threshold is always
less extreme with quadratic than with linear payoffs: z* % x** % 1/3 for all p § 3/5.

3.2 Enlarging the state space

In this section, we are interested in situations in which making a decision requires to assess
the likelihood of many states, so that information is more complex to evaluate. To better
isolate this new dimension, we consider the model presented in section 2.1 and assume
that there is a continuum of states s € [0, 1], but only two possible actions v € {0,1}. In
our example, there are many predators, and s captures the proportion of predators who
are currently in the neighborhood. The individual can only go hunting (v = 0) or stay
in the cave (v = 1). We order the states by the increasing degree of danger, from safest
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(s = 0) to most dangerous (s = 1). The probability of a cell firing level ¢ given state s is
now f(c|s). The generalization of MLRP to the continuous case is:

Assumption 1’ (continuous MLRP) di (‘?((C” 8))> >0 for all ¢ and s. (A1)
c cls

The individual initially believes that the state is s with probability p(s), where fol p(s)ds
1. The expected payoff function described in (1) can then be generalized as:

1
memzAp@m—wu

Since we restrict the action space to v € {0, 1}, the optimal action is:

5 =1 if /Olp(s)<l(1—s)—l(s))ds>0 and 4 =0 if /Olp(s)(l(l—s)—l(s)>ds<0

Given a prior distribution p(s) and a threshold x, the individual will put more weight
in states closer to 1 if ¢ > x and in states closer to 0 if ¢ < z. Thus, in equilibrium, the
individual will choose 4 = 1 if the threshold is surpassed and 4 = 0 if the threshold is not
reached (this property will be checked ex-post). The value function is then:

V(z;p(s)) = Pr(e>z)L(1;p(s|c>x))+Pr(c<z)L(0;p(s|c<x))
! (14)
- / () ((1 — F(e|s)I(1 - s) + F(c]| 5)1(3))ds
0
Denote by #(p(s)) = argmax, V(z;p(s)). We have:

Proposition 4 With a continuum of states s € [0, 1] and only two actions v € {0,1}, the
optimal threshold T is unique and given by:

- [ s (10 =) 1)) as = o (15)

—

I (%) >0, then #(¢(s)) < 2(p(s)).

The main conclusions stated in Proposition 1 extend to the case of two actions and
a continuum of states: (i) the optimal threshold is unique and (ii) if one individual puts
more weight in higher states than another in a MLRP sense, (%)l > 0, then he also sets
a lower threshold. This property is simply a generalization of the comparative statics on p
to the case of a continuous distribution of beliefs. It thus strengthens the idea that, under
an optimal threshold, existing beliefs are more likely to be supported and less likely to be

refuted than opposite beliefs.
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3.3 Dynamic thresholds

So far, we have assumed that the individual takes one look out of the cave before choosing
whether to go hunting. Another natural extension is to consider the situation in which
he can take a second look before deciding what to do. This case is interesting only if the
individual can re-optimize the threshold after having looked for the first time (otherwise,
it boils down to a model with one stage of cell firing and a more accurate information). We
deal with this situation by adding one stage to the basic model described in section 2.1. In
stage 1, the individual has a prior belief p. He sets a threshold y, learns whether ¢; 2 y,
and updates his belief. In stage 2 and given his new belief, he sets a new threshold x, learns
whether ¢o 2 = and, again, updates his belief. The action (and payoff) is contingent on his
posterior belief which depends on ¢; 2 y and c2 2 x. We assume that ¢; is independently
drawn from distribution G¢(c;) if S = A and distribution Fy(c) if S = B, with t € {1, 2}.

Distributions may be different across stages but both gi—gg and Z; 38 satisfy (A1).

The game is solved by backward induction. The second cell firing stage is identical
to that described in section 2.2. The second stage value function is then given by (4).
If the first threshold y is surpassed, the posterior is p(y) and the optimal second period
threshold is 2*(p(y)). If the first threshold y is not reached, the posterior is p(y) and the
optimal second period threshold is 2*(p(y)). Combining (2), (3) and (5), we get:

fl*®W) _ Py _ p 1-Giy) (16)
92(z*(p(y))) 1-ply) 1-p1-Fi(y)
f(z"(p)) _  ply)  _ p  Giy) (17)
g2(z*(p(y))) l-ply) 1-p Fi(y)

The value function that the individual maximizes in the first cell firing stage is:

W(y:p) = Pr(e1>y) |V (@ (p():59))| + Prier<y) [V (pw))ip)|  (18)

The first term is the likelihood of surpassing a cutoff y, in which case the posterior
becomes P(y), multiplied by the second-stage value function given this posterior (see (4)),
and under the anticipation of an optimal second-stage threshold x*(p(y)) (see (5)). The
same logic applies to the second term. Notice that threshold y affects the utility of the
individual only through its effect in the posterior belief transmitted to stage 2. Denote by
y*(p) = argmax, W(y;p) the optimal stage 1 threshold. It maximizes (18) under (16)
and (17). Taking the first-order condition in (18) and applying the envelope theorem:

oW (y; p) Al p Gal@(p(y"))) — Ga(z" (p(y)))

o ey " T al) T 1-p BEEw) - BEE) Y

and we get the analogue of Proposition 2 to the dynamic threshold case.
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Proposition 5 Under (A2) and with two cell firing stages, a sufficient condition to have
a unique optimal threshold y* in stage 1 given by (19) and such that dy*/dp < 0 is:

& [BW P o) + 0 - RODRE G| >0 (C2)

Under (A1), condition (C2) guarantees dy*/dp < 0 in every locally optimal threshold but
not uniqueness.

It is well-known that two-stage optimization problems are easily plagued by non-
convexities in the overall maximand, hence the possibility of multiple local optima. Propo-
sition 5 determines a sufficient condition for uniqueness of the maximum. Under this con-
dition, the familiar comparative statics with respect to p is also preserved. In fact, the
two-stage model with decreasingly costly departures is technically similar to the one-stage
model with increasingly costly departures. In particular, the same two effects operate
when the threshold is increased. First, a direct effect: the new threshold is less likely
to be surpassed. Second, an indirect effect: because surpassing a higher threshold is a
stronger indicator of state A whereas not reaching a higher threshold is a weaker indicator
of state B, an increase in stage 1 threshold is always followed by a decrease in stage 2
threshold (dz*(p)/dy < 0 and dx*(p)/dy < 0). As before, the condition stated in the
proposition ensures that the direct effect dominates the indirect one.

Following a similar procedure as in section 3.1, we impose specific functional forms
to be able to characterize the equilibrium. We assume that the second stage cell firing
densities are linear and symmetric, g2(¢) = 2¢ and fa(c) = 2(1 — ¢), and keep a general
formulation for the first stage cell firing densities. It turns out that, under this restriction,
the optimal first stage threshold takes the same form as in the one-stage quadratic case.

Proposition 6 Under (A2) and with second stage linear and symmetric cell firing den-
sities, the optimal first stage threshold y* is unique, it satisfies dy*/dp < 0, and it solves:
Al p A=Db"))+ (1 -py))

0w " I-p P+ (20)

Under (A1), there might be multiple locally optimal thresholds, but they all satisfy
dy*/dp < 0.

Proposition 6 shows that, under some conditions, being more receptive to information
that confirms rather than contradicts existing beliefs is optimal also when further news
are subsequently available. The intuition relies, just as before, on the balance between the
likelihood of the information and its impact: the individual must sacrifice either quality
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or probability of obtaining information, and quality is relatively more valuable for the
state that is a priori less favored. Interestingly, with an increased number of information
processing stages, the partition of beliefs becomes finer. This means that a larger number
of posterior beliefs can be reached depending on how many thresholds are surpassed and
how many are not. Note also that, with three or more stages of cell firing, the thresholds
at all but the last one only affect the belief inherited at the following stage (just like y only
affects the belief at stage 2). Thus, we conjecture that the main properties of the thresholds
emphasized in Propositions 1 and 6 should, under reasonable conditions, be preserved in
a situation involving more than two cell firing stages. Unfortunately, when we increase
the number stages, the problem becomes too challenging to be solved analytically.

Propositions 1 and 6 taken together have an interesting implication for the neurobio-
logical role of emotions on decision-making.

Corollary 2 Under the premises of the somatic marker theory, emotions improve decision-
making at every stage of the information gathering process. Furthermore, an emotional
individual is most likely to develop beliefs that are maintained and least likely to develop
beliefs that are abandoned.

Because beliefs are developed on the basis of relevant information, it is obvious that,
other things being equal, further evidence is more likely to reaffirm the individual in his
beliefs than contradict him. Corollary 2 makes a stronger argument: compared to an
individual with an abnormal activation of somatic signals, an emotional individual will
modulate thresholds in a way that he is most likely to stick with the same action as his
prior intention was. Indeed, an increase in the belief that the true state is A implies a
decrease in the first period cutoff, so a higher likelihood of surpassing it. Furthermore,
if it is surpassed, the belief is again updated upwards and the second stage threshold is
decreased even further, resulting in a snowball effect.!®> We conclude this section with a
simple example that nicely illustrates these and other effects of optimal threshold selection
on the process of information acquisition

Example 2. Consider a two-stage cell firing model and suppose that the density functions
are identical in both stages, symmetric and linear: g;(c) = 2c and f;(c) = g(1—c) = 2(1—¢),
with ¢ € {1,2}. From (5) and (20) and after some algebra, the optimal thresholds in the

13Naturally and using a basic property of martingales, if the emotional individual receives contradictory
evidence, he will revise his beliefs more strongly in the other direction (see section 5.3). Also, as signals
tend to infinity, the individual always ends up learning the true state independently of whether thresholds
are set optimally or not. The point here is that by optimally modulating thresholds, the total probability
of taking the action favored by the prior belief is increased.
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first and second stage are:

1-y*\? p « v1i—p 1—z" p .
( . >— & y'(p) = ————= and —=—— & 2 (p)=1-p
Yy I—p VI—-p+./p x I—-p

The threshold is always less sensitive to the belief in the first stage than in the second

stage, =*(p) % y*(p) % 1/2 for all p § 1/2, which seems quite natural. The individual
anticipates that, after the first cell firing stage, there is still more information to come.
Therefore, maximizing the amount of information acquired in the first stage is relatively
more important than learning whether, at this point, it supports or contradicts current
beliefs, and more information is on average obtained with a less extreme threshold. More
generally, the result implies that for some extreme priors, the belief about which state is
more probable will not be reversed after the first cell firing stage.'* This sharply contrasts
with the second cell firing stage, where a necessary condition for a threshold to be optimal
is that it must prescribe different actions depending on the result of cell firing.

4 The effect of physiological limitations on decision-making

The information processing mechanism by which the individual sets a threshold and learns
only whether it is surpassed necessarily implies some information loss, relative to a situa-
tion where the individual could determine the exact level of cell firing. In this section, we
discuss the cost of this physiological constraint as a function of the environment consid-
ered: two or more states, one or two cell firing stages, and concave or convex loss functions
(section 4.1). We then propose a simple extension where the individual can choose be-
tween a low cost but coarse information partition and a high cost but precise information
partition, and study in which cases one of them dominates the other (section 4.2).

4.1 Costs of a coarse information partition

Suppose that the brain could determine the exact level of cell firing. Interestingly, in
the environment described in section 2.2 with two states and a weakly convex utility
loss, physiological limitations do not prevent efficient decision-making. The key is that
I"(z) = 0 implies that only extreme choices are optimal. The threshold z* is set in such
a way that if the individual learned that ¢ = * (a zero-probability event), then he would

“Formally, Pr(Aler > y*(p)) = 1—[y*(p)]> < 3 forall p < 274\/5. Symmetrically, Pr(Alc; < y*(p)) =
1—y*(p)® > % for all p > %. If p € (0, 2_4‘/5)7 the individual will believe at the end of the first stage

that B is more likely than A independently of whether ¢1 = y*. If p € (2+4‘/§, 1), the individual will believe

at the end of the first stage that A is more likely than B independently of whether ¢; 2 y*.
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be indifferent between actions v* = 0 and v* = 1. Formally and using (5):

PI‘(A|C:(E*)_ pg(l’) _ B

Cpg(zt)+ (1 —p) f(z¥) ma+7p

As a result, v* = 1 dominates v* = 0 for all ¢ > x* and v* = 0 dominates v* = 1 for all

¢ < z* which, in turn, means that learning whether z* is surpassed or not is sufficient for
the purpose of determining which action to take. Even though the assumptions in section
2.2 are restrictive, it is worth thinking in which circumstances they are met. Convexity of
the payoff function reflects the fact that marginal departures from the ideal choice are the
most costly ones. Therefore, it is suitable to model environments where life-threatening
events occur as soon as the optimal action is not taken. In our example, it can capture
a high probability of both fatal injury when a predator is encountered and death by
starvation if no food is collected.

The same conclusion may extend to more complex environments. In the continuum of
states extension presented in section 3.2, the individual does not suffer a utility loss form a
coarse information partition, simply because the action space is binary. Overall, as long as
(i) there is one stage of cell firing and (ii) only two actions are relevant (in equilibrium as
in section 2.2 or by assumption as in section 3.2), setting one threshold will be sufficient.
We label these environments as “basic” or “primitive” decision-making situations. We
can also see why the two conditions are necessary. Consider a situation with increasingly
costly departures and a large action space. As discussed in section 3.1, the optimal action
in that environment is different for every belief. Therefore, if the individual is only able to
set a threshold, he will have only one of two posterior beliefs (depending on whether the
threshold is surpassed or not), which immediately results in a strictly positive utility loss.
A similar argument applies to the dynamic environment considered in section 3.3. Finally,
notice that under a coarse information partition, the order in which evidence is received
matters. For example, under the sequence c¢* ‘small’ followed by ¢** ‘high’, v = 1 is more
likely to be chosen (i.e., stage 2 threshold is more likely to be surpassed) than under the
sequence c** followed by c*. The results of this section are summarized as follows.

Proposition 7 Physiological limitations in information processing may not prevent ef-
ficient decision-making but only in basic situations: a static environment with a choice
between two relevant alternatives.

We provide a simple analytical example characterizing the utility loss due to a coarse
information partition in a two-stage cell firing environment.

Example 3. Consider the same setting as in Example 2. Let {(0) = 1, I(1

) = 0 and
p = 1/2, which implies that y* = 3, p(3) = 2, z*((3)) = 1, p(3) = 7, and z*(p(3)) =

)
p(3)

3
1
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Given p(Alc1) = c1, the expected payoff if the exact level of cell firing ¢; is observed is:

1

Wepf Pr(er]A)[1 ~ G (p(Alen))]des + (1~ p) | PrB[Fa ) e = §

The payoff if the individual learns only whether the threshold y* = 1/2 is surpassed is:

W = Pr(4)| Pr(er > 31 4) Pr(er > £| 4) + Pr(er < §| 4) Pr(er > § [ 4)]
13 ~
+Pr(B>[Pr(01 < 3|B) Pr(c; < 2|B)+Pr(c1 > 3| B)Pr(c; < i|B)] =5 <W

which, in this case, results in a utility loss of only 2.5%.

4.2 The affective and cognitive encoding channels

As discussed in section 1.3, the main objective of the paper is not to analyze the interplay
between a rational and an emotional system in the brain. Nevertheless, understanding
whether neuronal thresholds are modulated by the soma (and, if so, why) remains a
challenge in neuroeconomics. In that respect, comparing the behavior of an individual
supposedly using an emotional process with the behavior of an individual using a “more
sophisticated” process might shed some light on this puzzle.

In this section, we postulate that, for each decision, the brain may have to choose be-
tween different encoding channels: an affective process where the partition of information
is coarse but fast vs. a cognitive process where the partition is fine but slow and/or en-
ergy demanding.'® The affective process is the process analyzed so far; it only determines
whether the neuronal activity is above or below a threshold. The cognitive process is a
sophisticated channel capable of interpreting neuronal activity in more detail (for exam-
ple, by setting more than one threshold). It is crucial to note that this approach does
not presuppose that the cognitive channel leads to correct choices whereas the affective
channel makes mistakes. Rather, both channels process the information received in an
optimal way. However, the latter channel faces tighter constraints than the former.

According to Proposition 7, the affective channel is sufficiently precise in basic sit-
uations. When the environment is more complex, the utility loss of a coarse partition
becomes positive, and the cognitive channel becomes relatively more valuable. To study
in more detail the marginal gain of using the cognitive channel, we consider the simplest
extension of the basic model in which the affective channel is not fully efficient. Formally,

15Contrary to the rest of the paper (and to the general methodology advocated in it) this subsection is
based more on an “intuitive trade-off” than on evidence from neurobiology. The conclusions should then
be taken with extra caution.
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we add a third state, S = O, to the two-state and a continuum of actions model of section
2. State O is intermediate and captures, for example, a case where hunting is mildly
dangerous. The payoff of the individual in that state is I(y — %) and the probability of

/ /
a cell firing level ¢ is h(c), with (igg) < 0 and <38> < 0 for all ¢. Given a linear

loss function, I(z) = —|z|, a straightforward extension of the argument in Proposition 1

1
9
First, there is a utility loss whenever the affective channel is used. Second, there is no gain

implies that only three actions can be optimal, ¥ € {0, 5,1}. This has two implications.

in utility by being able to set more than two cutoffs. Therefore, without loss of generality,
we assume in what follows that the cognitive process sets exactly two thresholds.

Denote by pg the probability of state S (with ) ¢pg = 1). For the same reason as in
section 2.2, a necessary condition for cutoffs x; and x9 (> x1) to be optimal is that ¥ =0
if c € [0,21), ¥ = 1 if ¢ € [z1,22] and § = 1 if ¢ € (22,1]. The value function that the
individual maximizes is then:

V(x1,29) = Pr(c < z1)L(0;p(-| ¢ < x1)) + Pr(c € [w1, z2]) L(5; p(-| ¢ € [21, x2])
+Pr(c > 22) L(1;p(- | ¢ > x2))
= —pp|(1 = Fla2)) + 3(F(z2) = F(@1)] —po |§(1 — H(z2)) + $H()| (21)
—pa|$(Glaz) = Gla1) + Glan)]

Taking first-order conditions in (21), we obtain that the optimal cutoffs under the
cognitive information processing channel, x and Z, solve:

and 1@ _Pa_ po i@

g(z) pB  pB 9(2) 9Z) pB pB 9@

f(z)  pa | po hz)
e R L aaad
Notice that z < Z for all pa,po,p € (0,1)® and 2 = 2* = T when po = 0. If an
information partition in three regions is cognitively too demanding, the individual can
activate an affective channel, characterized by one cutoff only. Information processing is
then faster but partitioned in only two regions. Let & be the cutoff that solves:

f(&) _ pa

9(Z)  pB
It is immediate to see that & € (z,7), and we can state the following result.
Proposition 8 With three states, the cognitive channel sets two thresholds (x,T) whereas
the affective channel sets one threshold which, depending on (pa,po,pB), is either x, & or

T. The utility loss under the affective channel is highest when all states are equally likely
and lowest when one of the states is highly unlikely.
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When the individual sets only one threshold, he realizes that this excessively coarse
information partition results in some utility loss, since he will be able to discriminate only
between two actions. The question is to decide which action is not worth pursuing. This
depends on the relative likelihood of the different states. When A is the most unlikely
state (pp/po and po/pa are high), the individual sets threshold z, and chooses v = 0 if
c<zandy= % if ¢ > x. Thus, the affective channel discriminates optimally between
the low and medium actions and fully disregards the high one. When B is most unlikely,
the individual sets T and disregards the low action, and when O is most unlikely, the
threshold is # and only extreme actions (0 or 1) are undertaken. Overall, the affective
channel sacrifices the action which is optimal in the state most unlikely to occur, and
discriminates optimally between the other two. Therefore, even though by definition the
cognitive channel always outperforms the affective channel, the utility difference between
the two depends on the probability distribution of states: the difference is greatest when
all states are equally likely and smallest when one state occurs with very low probability.

5 Implications of the theory

We now analyze some implications of our theory. We also discuss and evaluate some
arguments developed recently in neuroscience regarding the effect of emotional deficits
in decision-making. Again, emotions are viewed here as brain mechanisms that channel
threshold modulation. The skeptical reader can focus on the general implications of the
mechanisms and ignore the discussion about the role of the soma. For tractability, we
consider the basic model presented in section 2, which is simple enough to be extended in
a number of directions, and we assume that 74 = ng = 1.

5.1 Emotional choices in simple and complex activities

If emotions are responsible for modulating thresholds, a natural question is to determine for
which activities the cost of an emotional impairment is greatest. Activities differ in several
dimensions, such as the temporal horizon (near vs. distant), the likelihood of occurrence
(common vs. exceptional) and the difficulty to mentally represent the consequences of
outcomes (concrete vs. abstract). Based on studies with brain lesion patients, the somatic
marker theory argues that impairments in the emotional system have more dramatic effects
in choices related to abstract, exceptional and temporally distant situations than in choices
related to concrete, common and temporally close situations (Anderson et al. (1999),
Bechara and Damasio (2005)).

An extension of our theory can help understanding this issue. We divide activities into
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two categories: simple (concrete, common, temporally close) vs. complex (abstract, excep-
tional, temporally distant) and assume that activities in the former category are easier to
evaluate than in the latter one. Formally, we assume that information obtained through
cell firing is uniformly more accurate in simple than in complex activities. This means for
example that it is easier to process news about the relative value of two goods available
for immediate purchase than about the relative desirability of two future sentimental re-
lationships. We use subscript k € {«, 5} to denote the two categories of activities, where
“a” refers to simple activities and “3” refers to complex activities. The probability of cell
firing ¢ in activity k is denoted by fi(c) if S = B and by gx(c) if S = A. We assume

!/
that the complex activity satisfies (A1), that is, ( g g 8) < 0. The greater accuracy of

cell firing conditional on state in simple than in complex activities is also captured with a
standard MLRP: , ,
(1) 2o . (B0 <y
g8(c) f(c)

The idea is simply that “neuronal mistakes”, defined as low cell firing when S = A or high

cell firing when S = B, are uniformly less frequent in a-activities than in S-activities.
Taken together, these conditions imply that the simple activity also satisfies (A1), that

/
is, (5 ZEE;) < 0. Denote by z;(p) the optimal threshold in activity & as a function of p.
We can show the existence of a belief p € (0, 1) such that the optimal threshold coincides
in both types of activities (z3(p) = 27, (p) = ). Our next result is as follows.

Proposition 9 Optimal thresholds are more sensitive to initial beliefs in complex than in

simple activities, that 1s, xg(p) § xk (p) § I for all p % p.

We showed in section 2 that the optimal threshold x* is set in such a way that the ex-
post confidence in the true state is balanced. When the evidence is accurate and therefore
the correlation between state and cell firing is high (simple activities), small variations in
the threshold are sufficient to achieve the desired balance. Conversely, when the evidence
is noisy and therefore the correlation is low (complex activities), the individual is forced to
resort to more extreme variations in thresholds. The implications of this simple argument
are interesting. It suggests that the inability to modulate neuronal thresholds, due for
example to a somatic deficit, results in relatively poorer choices and more mistakes when
the situation is subtle (e.g., an action that may cause a moral harm on someone) than when
the situation is straightforward to evaluate (e.g., an action that may cause a physical harm
on someone). This hypothesis is largely favored in the somatic marker theory (Damasio
(1994), Bechara and Damasio (2005)).

The result is also in accordance with the evidence in animals regarding the correlation
between task difficulty, belief, and probability of a choice error (Ditterich et al., 2003).
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Indeed, as briefly discussed in section 1.1, when monkeys choose between two options (net
direction of random dots), the likelihood of mistakes is higher the smaller the fraction of
dots moving in synchrony.!® A testable implication of our theory is that their confidence
in the action selected should increase with the degree of synchrony of dots.

5.2 Emotional interactions in cooperative and competitive environments

Given that the optimal threshold depends on prior beliefs and payoffs derived from ensuing
decisions, we can reasonably anticipate that any element that modifies the structure of
individual payoffs should impact the threshold modulation. Natural environments with
this property are strategic interactions.

Consider the following extension. Two agents, ¢ and j with i,7 € {1,2}, are either
in competition or cooperation for an activity. We adopt a reduced form model of the
positive (cooperation) and negative (competition) externalities exerted by individuals on
one another: in cooperative situations, agents benefit if their colleague also takes the
correct action whereas in competitive situations, agents benefit if they alone take the
correct action. This, for example, captures the cases where individuals hunt together and
compete for preys, respectively.

Agents cannot exchange information. They each set a threshold x;, learn whether the
cell firing activity is below or above the threshold, and choose an action. The state is
common to both agents but, conditional on it, cell firing is independent across individuals.
Denote by A the agent’s utility of taking the correct action. If, in the cooperation setting,
the other agent also takes the correct action or if, in the competition setting, the other
agent takes the incorrect action, the utility is increased by p. Using the superscript “+”
and “—” to denote the cooperation and competition settings respectively, we can rewrite
the value function of agent i as follows:

Vi (@i, x;) = P(A)P(c > x| A) [/\ + uP(c > IL‘j|A):| + P(B)P(c < z;|B) [)\ + pP(c < zj|B)

= p(1 = G@:) A+ (1 = Glwy)| + (1 = p)F (@) A+ p Fay)] (22)
Vi (25, 25) = P(A)P(c > x;A) [A + uP(c < xj|A)} +P(B)P(c < z;|B) [)\ + uP(c > z;|B)
= p(1 = G@:) A+ 1 Glay)| + (1 = p)F (@) A+ (1 = Flay))] (23)

Note that g = 0 corresponds to the case of independent activities analyzed in section
2.2. Denote by z; = argmax,, V. (z;,z ] *) and by z; = argmax,, V,~ (zi,2; ). Taking

)

6The paper also shows that monkeys require more time to take a decision, an issue not modelled or
discussed in this paper.

26



first-order conditions in (22) an (23), if interior solutions exist, they will be such that:

fah)  p Atpd-G@E)))
glef) 1=p  A+pF(z))

(24)

fla) _ p A+ nGg)
gle;)  1=p A+p(l-F(z}))

According to this formulation, thresholds are strategic complements in cooperative

(25)

activities (dx; /dx; > 0) and strategic substitutes in competitive activities (dz; /dz; < 0).
The reason is simple. Suppose that agent 1 decreases his threshold. This makes him more
likely to surpass it, and therefore to take action v* = 1. In cooperative activities, it also
increases the expected benefit for agent 2 of taking action v* = 1 when S = A relative
to the expected benefit of taking action v* = 0 when S = B, since the extra cooperative
payoff is more likely to be enjoyed in the first than in the second case. The cost of either
wrong choice does not change. Therefore, agent 2 has an incentive to move the threshold
in the same direction as agent 1. The opposite is true in competitive activities.

In what follows, we look for interior symmetric equilibria, where x;r = x;r =77 in the

cooperative case and x; = r; =x in the competitive one. We denote by x = u/\ the
relative importance of the other agent’s choice on one’s payoff. In order to have interior

solutions, the following technical restriction needs to be imposed.

Assumption 3 (Interior stability) The parameter k is such that:

kg(x™) K fzt) gzt  fla")
[T r(l—C@) T THrFGED) ~ gla)  fla) (A3.1)
rkg(x™) K f(x7) g'(z7)  [f'@)
T rhGa) 11RO —F@ ) ~ o) fla) (A3.2)

If assumptions (A3.1) and (A3.2) are violated, then the solutions in the cooperative
and competitive settings respectively may not be interior. For some distributions, these
inequalities are satisfied for all x. Otherwise, they require x to be small enough.!” The
reason is straightforward. As x increases, the decision of each agent becomes closer to a

" Technically, these assumptions ensure that the slopes of the reaction functions are smaller than 1 in
absolute value at the symmetric intersection. Note that the L.H.S. in (A3.1) and (A3.2) are increasing
in k. Therefore, sufficient conditions for the inequalities to hold are:

o@t) |, f@t) _ g i) o) | f@) @) )
oeh T reh < geh ~ fen 2 eyt ire < e T Feo

The first inequality always holds for instance if f(-) and g(-) are linear and symmetric, as in Example 2.
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coordination problem. Suppose that one agent disregards information and always takes
action v* = 1. Then, if s is high, the other agent also has an incentive to disregard
information and take action v* =1 (in the cooperative setting) and action v* = 0 (in the
competitive setting). Under these conditions, we can prove that there exists p € (0, 1) and
7 such that 27 (p) = 2*(p) = = (p) = Z. We have the following result.

Proposition 10 Optimal thresholds are more sensitive to initial beliefs in cooperative than
i independent activities, and less sensitive in competitive than in independent activities.
<

Formally, x*(p) S a*(p) Sa~(p) S for all pZ .

Proposition 10 states that, from a pure information processing perspective, threshold
modulation is more decisive in cooperative than in competitive situations. Because in
cooperative activities there is an extra payoff when both agents undertake the same correct
action, the benefit of favoring the current belief (the state a priori most likely to be correct)
is increased relative to the case of independent activities. Conversely, in competitive
situations, each agent is more interested in learning that the least likely state is the correct
one. As a result, they both set the threshold in a way that existing beliefs are less favored
than under independent activities. Overall, the result of this simple extension suggests that
an emotional deficit that prevents the individual from modulating neuronal thresholds (for
example, keeping it always at Z) is more costly in environments with positive externalities
than in environments with negative externalities. That is, emotions may be more helpful
in cooperative than in competitive situations.

5.3 Emotional reactions to expected and unexpected events

Neuroscientists have been interested in the reaction of individuals to unexpected events.
Schultz et al. (2000) claim that somatic states induce an overreaction to unanticipated
outcomes, and determine in a series of experiments the biological mechanism behind this
behavior, labeled the “Dopaminergic Reward Prediction Error” (DRPE) hypothesis. This
theory argues that the response to rewards materializes in changes in dopamine release,
which reflects the discrepancy between the reward itself and its prediction.'® Bechara and
Damasio (2005) integrate this idea in the somatic marker theory: “[T]he very quick, almost
instantaneous, switch from one somatic state to another when an unexpected event occurs,
can exert a disproportional impact on somatic state activation. Thus people’s decision may
get reversed completely if a disappointment was encountered” (p.365).

From a Bayesian perspective, beliefs are revised more strongly the greater the distance

between prior and observation. So, without a formal benchmark for comparison, it is

8 Caplin and Dean (2007) provide an axiomatic approach of the DRPE hypothesis.
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difficult to determine whether there is “overreaction” and a “disproportional” response,
or just a natural belief reversal due to the influx of contradictory evidence.

We study this issue within the framework of our model by considering the following
extension. In stage 1, the brain sets a threshold x and determines whether cell firing is
above or below it. In stage 2, the individual updates his beliefs and chooses an action. In
stage 3, he observes the outcome and assesses his ex post confidence in the choice he made.
If the payoff is perfectly correlated with the true state, the individual learns with certainty
whether he made the correct choice. That is, the ex-post probability of each state is either
0 or 1. More interestingly, under imperfect correlation, the (positive) reaction after a
success and (negative) reaction after a failure may depend on the threshold selected. Our
objective is to analyze this case in more detail. Imperfect correlation is modeled in a
simple way. If S = A, the payoff of action v is I(y — 1) with probability 6 and I(v) with
probability 1 — 6, with 6 € (1/2,1]. If S = B, the payoff is () with probability 6 and
I(y — 1) with probability 1 — 6.2 In our example, on a dangerous day, the individual may
be lucky, avoid all predators, and go back to the cave believing it was a safe day.

We first need to characterize the optimal strategy of the individual in this modified
version of the problem. In stage 2, the expected payoff of the individual is:

L(ip0) = [p0+ (1 =p)1=0)| iy =)+ [pA =)+ 1 =p) i) (20)

Let p’ = pf# + (1 — p)(1 — 6) be the probability of encountering a predator. It is
immediate that the strategy of the individual is the same as in section 2.2: ~* = 1 if
p > 1/2 and v* = 0 if p’ < 1/2, where p’ = 1/2 if and only if p = 1/2. In words, the
correlation between the ex post payoff and the state does not affect the optimal action.

In stage 1, the brain sets a threshold  which may or may not coincide with z*(p), the
optimal one. We restrict the attention to the non-trivial case where the threshold is such
that the result of the cell firing activity is informative (Pr(A|c < z) < 1/2 < Pr(4|c >
x)), because otherwise this stage is ignored. The question we ask is: for any given x, how
will the individual revise his beliefs after observing the outcome? Note that there are only
two possible outcomes in stage 3: [y =1(0) and I, = [(1) (< [(0)). By construction, the
individual expects to be correct (otherwise he would choose the other action) and get lf.
We thus call [ the “expected outcome” and I, the “unexpected outcome.” The confidence
of the individual is boosted when followed by a high payoff and reduced when followed
by a low payoff. If the level of cell-firing is high, he takes action v* = 1 and believes this
action is correct with probability:

Pr(A|c>x) =p(x)

9Section 2 thus corresponds to = 1, where the true state is known ex post.
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If the outcome is the expected one, his revised belief that the action was indeed correct is:

p(1 — G(z))0

Pridle>wln) = —Gong T = p)0 - Fa)d =

5 =) (> pla)

Otherwise, his belief is revised downwards to:

p(1—G(x))(1—6) o )
p(1—G(x)(1—0)+ (1 —p)(1—F(x)o p(z,lr) (< p(z))

Pr(A|lc>uz,lp) =

Let p(x, ) —p(z) be the increase in confidence after a high payoff, and p(z) —p(z, (1)
the decrease in confidence after a low payoff. These differences measure the positive reac-
tion to an expected event and the negative reaction to an unexpected event, respectively.

Similarly, if the level of cell firing is low, the individual takes action v* = 0 anticipating
it is correct with probability:

Pr(Blc<z)=1-p(x)

Again, if the action is confirmed with a high payoff, his revised belief becomes:

(1 —p)F(z)0

Pr(B|c <z, lg) = (1 —p)F(z)0 + pG(x)(1 -0

] =1-px,lg) (>1-px))
Otherwise, he believes the action was correct with probability:

(1-pF@0-6)  _
(1—p)F(z)(1—0)+pG(x)§ 1—p(z,lr) (<1-—p(x))

Pr(Blc<uz,l) =

In that case, p(x)—p(z, ) measures the reaction to the expected event, and p(z,lr)—p(z)
measures the reaction to the unexpected event. It can be easily shown that, for all x, the
reaction to unexpected events is always greater than the reaction to expected events. Also,
as the environment becomes more stochastic, observing an event is less informative and
beliefs are less drastically revised in either direction. We also have the following result.

Proposition 11 More extreme cutoffs lead always to lower reactions to expected events.
They lead to higher reactions to unexpected events if 0 is high but also to lower reactions
to unexpected events if 0 is low.

Thresholds affect the magnitude of the reaction to different events. An individual who
surpasses an extreme threshold is more confident in his action (here 4* = 1) than an
individual who surpasses a weak threshold. Therefore, he also experiences less (positive)
surprise when his decision is confirmed by a high payoff. More surprising is the case
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of an individual who obtains a low payoff. If the environment is deterministic (6 high),
he becomes almost sure that his decision was incorrect. Given that extreme thresholds
lead to stronger beliefs, they also lead to a higher (negative) surprise. By contrast, if
the environment is stochastic (6 low), there is little information in the payoff and the
posterior belief hinges towards the prior. Here, given that extreme thresholds lead to
stronger beliefs, they also lead to a smaller surprise.

We can put this result in the context of the discussion regarding the reaction of individ-
uals to anticipated and unanticipated events. The informal arguments in the neuroscience
literature briefly reviewed above emphasize that an individual with emotional stability
exhibits a small positive surprise to expected events and a large negative surprise to unex-
pected events. This is only partly consistent with our findings. Indeed, the ability to set
extreme cutoffs always results in lower reaction to expected events. However, our model
predicts a high negative reaction to unexpected events only if outcomes are sufficiently
deterministic. This literature thus ignores the fact that, in highly stochastic environments,
individuals realize the negligible informational content of outcomes, and therefore react
mildly to realized payoffs, whether positive or negative.

6 Concluding remarks

We have modeled the physiological limitations faced by individuals when processing in-
formation. We have shown that, under such constraints, it is optimal to set neuronal
thresholds in a way that initial beliefs are favored. The conclusion holds in a wide array
of settings and has interesting implications for the somatic marker theory.

As discussed in detail, the general methodology used in the paper consists in build-
ing an economic model of decision processes based on evidence from neuroscience and
neurobiology. This “neuroeconomic theory” approach to decision-making has two main
advantages. First, by modeling the underlying mechanisms that lead to choices, it may
be possible to predict behavior more accurately. Second, the models provide testable pre-
dictions concerning the effects of pathologies on choices. We have extensively discussed
the first point but only briefly mentioned how emotional deficiencies that translate into
suboptimal thresholds affect decisions. We have therefore not exploited the full potential
of the methodology in the second dimension. A natural alley for future research would be
to test some of our implications in patients with brain lesions.

The model has also implications that extend beyond the realm of brain information
processing. First, we can apply it to a standard individual learning problem, under the
assumption that news obtained is coarse (much on teh liens of the theory of organizations
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literature). Under that interpretation, our model provides “a rationale for stubbornness”:
agents are less likely to change their mind as time passes, not only because they are more
confident about which alternative they prefer, but also because they modify thresholds in
a way that existing beliefs are most likely to be reinforced. At the same time, when they
change their mind, they do it more drastically. It also suggests that stubbornness should
be more prevalent in complex issues, where information is more difficult to interpret.
Second and related, two individuals with opposite beliefs will set thresholds at opposite
ends and therefore may interpret the same evidence in opposite directions. In other words,
in a world of different priors, common information may increase polarization of opinions,
at least in the short run.?® Third, we have seen that the information sequence matters
in dynamic settings. This suggests that behavior can be influenced by manipulating the
order in which news is revealed. One could possibly develop a theory of framing based
on this approach. Last, the way information is interpreted in strategic settings seems to
affect behavior substantially. The multi-agent application we offered is introductory. It
would be interesting to analyze interactions in more general environments.

208ee Sobel (2007) for a different study of polarization in group decision-making.
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Appendix

A1l. Proof of Proposition 1

Taking the first-order condition in (4), we find that x*(p) satisfies (5). Given (A1), z*(p)
is unique and the local second-order condition is satisfied:
aQV / * / *
32| = P9 E@)ma(l(0) i) + (1 - p)f(2")7p(l(0) — (1))
N
= (1= p)meg(e)0) - 1(1) (43) <o,

dz*/dp < 0 is immediate from (A1). For V(z*; p) to be the value function, we must check
ex-post that it is optimal to select v* = 1 when ¢ > z* and v* = 0 when ¢ < z*. We have:

x*

* T * * 1-G(x* 1-F(z*
Pr(Ale > 2%) > T & pra(l-G(2")) > (1-p)mp(l— F(a7)) & SEE) > 1FED
* us * * G(z* F(x*
Pr(Ale <a2”) < JE— & pmaG(a™) > (1 —p)mpF(z*) & g((ﬁ)) < f((z*))
Both inequalities are satisfied given (A1). This completes the proof.
A2. Proof of Proposition 2
From (11) and using (7) and (8), we get:
0V (x;p) 1 dy™*(p)
Y — _ ok l kk _l kk f— F Kk l/ kk i
Sy |_.= p [fEI0"@) 10" E)) + PO @) =
*ok ok [— d’y** ﬁ
=P o) TP
x x**
= LRI R) + (1 - P @)]
- pdx L - VAP e
Similarly,
0%V (x; p) (8) e X3 (58)
— | = (-p)ga [ f@) (10 ®) — 16 0)) + F@)l (v (0) =g~ oy e
8552 T=x** ggz; ( ) B ¢ (gézg) ggl;
f(=z) 1-F(z))’
sk (=\\ AV (P T —G(z
+a—me%y@»”@“;3/Qﬁ%)
(53) =6 |,
f@)  (E@)) f@)  (1=E@Y 21/ (-
By (A2), 2 ,(i@)) <1 and 22 ,(1;6;(3)) < 1. Therefore, OViwip) <0 =
(g(z)) G (=) (m) 1-G(z) 8$ap r=rx**
2V .
W < 0 and the proposition follows.

A3. Proof of Proposition 3
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Let P = %. The F.O.C. in the quadratic case can be rewritten as:

1 —p OV (z;p)
p? ox

= k(z™, P)

p*

_ 1-G(z Gz 1-G(z) G(z)
where k(z, P) = ((1—G(x))P—£(i—F(x)) e P(-i-)F(x)> [f(x) ((1—G(m))P+(1—F(x)) aalerey P+F(x))

1-F(x F(z . C .
—g(x) ((1_G(x))P_£(%_F(x)) +ow P(+)F(x)>] Differentiating the F.O.C., we get
02V (z;p) Ok(z**, P)
0x0p | e oP

After some tedious algebra, and using (13), we get:

e (563 - 15’ y
o (0P + F + 5E) (P+ 53 (P+ )’

and the result follows.

A4. Proof of Proposition 4
Taking the F.O.C. in (14), we obtain (15). The local S.0.C. is:

02V 1 )
0| —A p(;)({x|(x)|8)<l(l_8) —l(s))ds
[ (2 oo e 19 (100 - 9~ 169
Let h(s) = —J;f((f";)) By (A1’), h/(s) < 0. We can then rewrite the local S.0.C. as:
2 1/2 1
27? = [, M) f(@ls) (10— 5) = 1(s) ) ds + I/Qh(s)p(s)f(i|s)(l(1 —5) = U(s))ds
1/2 1
< h(1/2) [ /O p(s) f(@]5) (101 = ) = 1(s))ds + / FEICD (10 -9) - l(s))ds] By
Regarding the comparative statics, if <223>/ < 0, then:
oV (:p(s) PO e
9 o) /0(§72(;)>q1( ) f(@(p(s)) | )(l(l ) —1( ))d
b N
- (P2 [ a9 st 19161 - ) = 165 s

34



Therefore,

IV (x;p(s))
ox

= &(p(s)) > #(q(s))
#(p(s))

_ p(1/2)\ OV (z;q(s))
oo (5m)) ™%,

Last, we need to check that it is indeed optimal to choose 4 =1 when ¢ > Z and 4 =0
when ¢ < . Let L(x) —L(l p(s|lc=z)) — L(0;p(s|c=x)), also p(s|c=x) = j(s|z) =

M and J(s = [y j(3|x)d35. Integrating by parts:
Iy p(s)f (x| s)ds
1
L(x) = /0 j(s|x) <l(1 —s)— l(S)>ds
1
= 10 1)+ [ sl (119 + 1) ds

0

Therefore

- / Tals2) (10— 8) +1'(5))ds > 0

since, by (A1’), we know that Fs(z|s) < 0 and therefore J,(s|z) < 0. From (15),
L(z) =0, so L(x) % 0 for all x % Z. This also proves that, for the purpose of the action

to be taken, it is equivalent to learn ¢ or to learn whether c is greater or smaller than z.

A5. Proof of Proposition 5 and 6

They follow the exact same steps as the proofs of Propositions 2 and 3, and are therefore
omitted for the sake of brevity.

A6. Proof of Proposition 8

Cognitive channel. Taking F.O.C. in (21), we obtain z and Z. We also have W =
1 z

h(z T 02V (z1,x (@Y 7))\’

~dpos(@) (4) ~dpas@) (48) <0, 2| = Lpog@) (A2) +ipsg(@) (L3)

< 0, and %5;;222) = (0. Therefore x and T are maxima. Last, it can be easily checked

that (Pr(A |c € X),Pr(O|c e X),Pr(B|c e X)) are such that it is indeed optimal to
have 7 =0if X = [0,2), ¥ = § if ¥ = [2,7], and 7 = 1 if X = (7, 1].

Affective channel. The three candidates for optimal cutoffs are:

T, so that 4 =0 if e<z, and =1 if ¢>ux,
xp so that =0 if c<xzp, and 4=1/2 if ¢>ay
z. so that y=1/2 if c¢<z, and =1 if e¢>uax,

35



These cutoffs are formally defined by:

xg, = argmax, V%z) = Pr(c<x)L(0;p(-|lc<x))+Pr(c>z)L(1;p(-|lc <))
x, = argmax, V°(z) = Pr(c<z)L(0;p(-|c <z))+Pr(c>z)L(3;p(-|c <))
z. = argmax, V¢z) = Pr(c<z)L(;p(-|c <z))+Pr(c>x)L(L;p(-|c<z))

It is straightforward to check that x, = %, z, = =, x. = T. Now, fix pp. Differentiating
each first-order condition with respect to pp, we get:

dx, dxy, dx.
>0, —>0, — >0
dpp dpp dpp
Furthermore:
AV () A2V (1) dz,
—— = =FaY ) +Gx")—-120, ——= = |f(z%) + g =0,
oy~ FEHCE) — 120, Toht = 1)+ glat)|
b(,.b b b C(AC c c
dV(:U):F(ac)—f—G(x)207 dV(x):F(x)-i-G(x)_lgO

dpp 2 dpp 2
Also, lim V%(z%) = PO im Ve(z¢) and lim V%a%) = PO fim Vo(zb).
p—0 2 pp—0

pB—1-—po 2 rB—1—po
Combining these results, we have that there exist p* such that ¢ dominates z® if
pp < p* and z dominates z¢ if pp > p*. Also, there exist p** and p*** such that x¢
dominates 2% if pp < p** and 2? dominates 2% if pg > p***. The ranking between p*, p**

and p*** will depend on the relative values of pp and py4.

A7. Proof of Proposition 9
(ga@) >0, ( (c>> <0, (fggg) <0 = B9 95(0) _ f5(0) fald (fa@)’ <o

gs(c) gs(c) c) 7 ggle) 7 fale) T fal ga(c)
Now, suppose there exists ¢ € (0,1) such that i;z—gég ggg ; Then,

fa(@)  galC)

d [fa(C) B fﬁ(c)] _ fa(0) <f&(é) B g&(é)) _ fs(9)
de [ga(c)  gp(c)].—:  9a(0) 95(¢)

SO 8 and fﬁgcg cross at most once. Furthermore, (gg—gg) > (0 and <f;8) <0 =

_f;ZEog > gﬁg ; and f“glg < 528. Together with the previous result, it means that there

exists & € (0,1) such that falz) 2 J5(@) g 1) o § Z. Finally, given (5), there exists p

galzr) < 98 (x)
oz (P T3 (P * [ * (A — A ~
such that Z;Ex‘gggg% = gggzgggi = 15, that is, 23,(p) = z5(p) = 27(p) = 2. Forallp 2 p
I* f( ()) * X[ A A
gxgg ;% gZ( Z(i)) = %p = J}B(p) S xa(p) S (p) S .
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AS8. Proof of Proposition 10

Cooperation. Taking the FOC in (22) and then differentiating it with respect to the other
agent’s threshold, we get:

Oz 0*V;" /0 Ow; _ L f@)/g(zf) [ 9(z;) A
Iz VT /() (f(a:f)/g(mj))/ At p(l=G(zy) A+ pF(x))

>0

Because reaction functions are positive and identical for both individuals, equilibria can
only be symmetric. Let R (x;) be i’s reaction function. Sufficient conditions for a unique,

+
stable interior solution are: R; (0) > 0, R (1) < 1 and aa?’_ . < 1. From (24), the
Jlzj=x

: " : 5(0) 5(1) 1
first and second inequalities can be written as S0y > ﬁ (14 k) and 5 < ﬁ T
which are strengthened versions of the conditions in Proposition 1. The third inequality

boils down to (A3.1). From (5) and (24), we finally get:

[ AtpFEt)  f@)
g(@®) N+ p(l—Gah) ~ g@)  I-p

Competition. Taking the FOC in (23) and then differentiating it with respect to the other
agent’s threshold, we get:

(27)

7 7

dr; RV, Jo 2 (fa)/ge))

Because reaction functions are negative there can only exist one symmetric equilibrium.

dz; OV [Ox 0wy [flxy)/g(xy) <0

{ 9(z;) N f(;)
A+ pG(xy) A+ p(l— F(zy))

Let R; (x;) be i’s reaction function. Sufficient conditions for the symmetric equilibrium

to be stable and interior are: R; (0) > 0, R; (1) < 1 and %Zi; > —1. From (25),
=,
; it ; f(0) 1 fQ1)
the first and second inequalities can be written as 50) > l%p 1 and o < % (1+k).

The third inequality boils down to (A3.2). From (5) and (25), we finally get:
f@) A+ p(l=F@) _ f@) _ p
g(x=) A+ pG) gla*)  1—p
Let Z be the value that solves F'(z) + G(z) = 1. Combining (27) and (28), we have:
f(2) AHRFGE) L JE) L JE) At ul -~ F(2)
9(z) A+ u(1-G(2) = g(2) = g(z)  A+pG(2)
fEt(®) MpF(t(p) [~ (P)) Mp(=F(z— () _ [f(=*(p)

There exists p such that 9B MAI=GGE ) = 9= () ArnCE—®) (@ (p)
For all p = p, then 27 (p) < 2*(p) S 2~ (p) S 7.

(28)

& F(2)+G(z) 21 @z27

p
-5

) —
)



A9. Proof of Proposition 11

Let a = P(A)P(I[A) = p(l — G@)), § = P(BYP(B) = (1 - p)(1 — F(x)), v =
P(A)P(0]A) = pG(x), and 6 = P(B)P(0|B) = (1 — p)F(z). Also, cell firing being in-
formative, we need p(z) = Pr(Alc > z) > 1/2 = %= > 1/2 = a > (. Similarly,

p(z) =Pr(Ale<z) <1/2= 45 <1/2=0>7. We ﬁz:ge:
_ _ _ = af(20 —1)
Pt =) = € = g3 50— o+ )
-~ aB(26 — 1)

Q)

p(x) = p(z,lL) =

a1 - 0) + po0l(a+5)
It is immediate to see that C — O o« a — 6 > 0. Furthermore, 886—; x af > 0 and
BC x af = 0. Also,
oc+ ) Bk,
T o< (=00 - a?0) (555 —aT0).

Given o > B and 0 > 1 — 0, we have (1 —0)52 —a20 < 0. Also, gw_agg—u p)pl(1—

G(2))f(z) — (1 = F(z))g(x)] > 0 for all = given MLRP. Therefore act /0z < 0. Last,

oC 9 9 op
5 o (1 =0)0> = 70) (o %_ﬂ -)

so for each z there exists § such that 8% < 0 forall & < 6 and % > 0 for all 6 > .
Similarly,

_ _ 5v(20 — 1)
2(e) ~plet) = 07 = [00 +~v(1—0)](5 +7)’
pla, i) —p(x) = C~ = 0v(26 — 1)

[6(1—8) +~8](0 + )

It is again immediate to see that C~ — CT o< § — v > 0. Furthermore, 6309 o dy > 0 and

83% x §v = 0. Also,

(00 s) o5 0%),

Given § > v and § > 1 — @, we have (1 — 0)y? — 620 < 0. Also, 7% - 5% = (1-
p)p[G(z)f(z) — F(x)g(z)] < 0 for all x given MLRP. Therefore 0C /0x > 0. Last,

oCc~ o 00
ox x ((1 B 0)6 9) (58.’B %)
so for each 2 there exists 6 such that 2~ > 0 for all § < § and 25— 8 < 0forall 0> 6.
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