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1 Introduction

Suppose that the seller of your current word-processing software program offers an upgraded version

with new features. Should you buy the upgrade or not? If you wait, you can continue using the

current version and there is the option of upgrading in the future, probably to a version with even

more features. But, if other buyers largely accept the current upgrade offer, there is the concern

that you will lag ‘behind’ the market. Perhaps the seller will then only offer a ‘catch-up’ version

at a relatively high price.

If you buy the current upgrade offer, the new features provide an immediate benefit and there is

still the option of future upgrades. Again, however, there is the question of where you are relative

to the market. If other buyers largely pass on the current offer, then you will find yourself ‘ahead’ of

the market. A future upgrade offer may then require you to purchase features you already possess.

How strong is the market position of the seller in an upgrade market? Because of the intertem-

poral complications on the demand side, the problem does not reduce to a sequence of independent

markets in which the seller acts as a static monopolist in each upgrade market. Buyers necessarily

assess each upgrade decision not only in terms of current value but also relative to how a current

purchase will impact their subsequent position with respect to future offers. This paper examines

a dynamic monopoly model of an upgrade market to provide an equilibrium assessment of market

power.

In a classic paper, Coase (1972) conjectured that if a durable goods monopolist could change

price very quickly, then the price would fall to marginal cost almost immediately. Thus, the seller

has almost no market power if this conjecture is correct. In the extensive literature that examines

when the Coase Conjecture holds and how a firm can alter or manage the environment to avoid

the loss of market power, the focus has been on a firm that sells a single durable good and faces

(heterogeneous) consumers who demand only a single unit of the good. While we have learned a

great deal, there are many durable goods, perhaps to the point of being the norm, whose qualities

are improving over time. One can divide these goods into two classes. One where owning previous

qualities (versions) of the good impact the ability of a consumer to derive value from newer qualities,

and the other when this is not the case, as when the goods are “independent”.

We refer to the first class as “upgrade goods.” Upgrade goods include both items that are

commonly thought of as upgrades, and others that are not. Software is the classic example of an

upgrade good. But there are many others that can also be viewed as upgrade goods. For example,
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B-52 bombers produced in the 1950s are still in use today and are expected to be in use in 2040, but

the plane is quite different than when it first came into use in terms of electronics, weaponry, and

other features.1 Other defense systems such as tanks and ships are also constantly upgraded. Non-

defense goods that are constantly upgraded included airports (terminals and runways), oil refineries,

nuclear power plants, cellular networks, cable systems, and transportation systems (roads).2 Goods

in the second class of durable goods include items such as television and computer monitors, cellular

handsets, and automobiles.

We examine an infinite horizon model of upgrade goods in which quality is exogenously increas-

ing over time. Thus, we are focusing on the commercialization dimensions of an upgrade market

- the pricing, timing and bundling decisions of the seller and buyers - in a setting where the ex-

pectation is that quality growth via upgrades is an ongoing feature of the market. We find that

quality growth in a durable good market can actually lead to a reduction in market power and

profits for a monopolist. We employ the simplest possible model needed to demonstrate this result.

A monopolist generates a new quality increment in each period and he repeatedly faces the same

consumers, all of whom have identical preferences. Thus, the standard Coasian incentive to cut

price over time and move down the demand curve is not present. The monopolist can sell any set

of feasible bundles in each period. For a quality increment to be useful to a consumer, he must own

all previous quality increments as well - the upgrade payoff structure. We find that in stationary,

symmetric, subgame perfect equilibria, the seller’s payoff ranges from extracting the entire surplus

to receiving only the single period flow value of each quality increment. Thus, we show that even

in the case where all consumers are identical, and there is no standard reason for them to earn an

information rent, quality growth and buyers who are always in the market can substantially vitiate

the market power of the seller. Clearly, this result has policy consequences for many industries

including the software industry.

This result is quite surprising relative to the results in Fudenberg, Levine, and Tirole (1985).

In that infinite horizon model, they show that a durable goods monopolist who has a good of a

single quality will never charge a price below the lowest consumer valuation. Thus, the lowest

value consumer is completely extracted. When all consumers are identical, one would then expect

1Details can be found on the website http://www.globalsecurity.org/wmd/systems/b-52-life.htm

2For details for oil refineries, http://findarticles.com/p/articles/mi_go2264/is_20050,1/ai_n9767023,
nuclear power plants, http://www.engineeringtalk.com/news/iic/iic109.html,cellular networks,
shttp://whitepapers.techrepublic.com.com/whitepaper.aspx?docid=178659,
and cable systems, http://www.cablesofteng.com/Digital%20Overlay%20Part2.pdf.
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their surplus to be fully extracted. This logic breaks down in our model when there is quality

growth. Consumers can then obtain positive and even very large shares of the surplus by (implicit)

coordination of their behavior. Suppose the consumers are supposed to obtain some positive given

level of utility and the monopolist raises the prices from the equilibrium price for the bundle of

goods in a period. We can support the equilibrium level of utility by having consumers reject this

proposed deviation and receiving a higher utility level in the continuation game. We find a set

of supporting utilities that make the monopolist indifferent between giving the buyers the current

utility level and delaying to sell in the next period. This gives the buyers the growth in surplus due

to the rising quality. After t periods of increasing buyer utility, the buyer utility remains constant

and the seller then obtains the surplus growth. The critical t is increasing in the equilibrium utility

and the discount factor (frequency of quality innovation).

There is a relatively small literature on upgrade models, with most of the work involving a finite

horizon. Fudenberg and Tirole (1998) examine a two-period model where consumers have different

valuations of the good. They focus on how the information structure of the monopolist impacts

the pricing strategy for the upgrade product, whether the lower quality is sold in period two, and

whether the firm may actually buy back the good it sold in period one. Ellison and Fudenberg

(2000) analyze a series of static and two period models. These feature network externalities and

a cost to consumers of upgrading the good. They address the issue of whether there is excessive

upgrading by the monopolist in the dynamic model and how heterogenous preferences and network

externalities interact. In our model, there are no direct network externalities while consumers are

identical and have no direct cost of implementing an upgrade. In the finite horizon version of our

model, the monopolist captures all the surplus. Thus, a key feature of our model is that the time

horizon is infinite and every decision is made with respect to the prospect of future upgrades.

There is a large literature on durable goods monopoly. Stokey (1981), Bulow (1982), and Gul,

Sonnenschein, and Wilson (1986) prove a version of the Coase Conjecture. In particular, GSW show

that if a monopolist’s costs are less than the lowest consumer’s valuation, then in any stationary

equilibrium the conjecture holds. Ausubel and Deneckere (1989) show that if players are sufficiently

patient, then any level of average payoff less than the static monopoly payoff can be supported as

a subgame perfect equilibrium. Thus, they provide a folk theorem result. Sobel (1991) analyzes a

model where consumers only want a single unit of the good, but there is entry of new consumers

over time. He proves a folk theorem result for a sufficiently high discount factor. Methodologically,

are paper is closest to Sobel, since both feature a market that never closes due to new demand
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(entry of new consumers and quality growth). Fehr and Kuhn (1995) show that if a monopolist

faces a finite set of consumers, then he can completely extract them if he is sufficiently patient,

while if there is a smallest unit of account then the Coase Conjecture holds if buyers are sufficiently

patient. If both sets are finite, then a folk theorem result holds.

Our model of a dynamic upgrade monopoly market differs in two fundamental ways relative

to this literature. First, quality growth implies that the seller will continually be able to offer

new ‘goods’ rather than repeatedly offering the same good. The important economic dimension of

quality growth is that available joint surplus changes over time. With a single good, joint surplus

never changes in that no sale today leads to the same available joint surplus tomorrow. Second,

buyers never exit the market. With a single good, a purchase decision always terminates a buyer’s

involvement. With quality growth and upgrades, the seller is never able to tempt a buyer in the

same way. The buyer expects to return to the market and upgrade decisions must account for

future choices.

In section 2, we present the model. Benchmarks are generated in section 3 to help differentiate

our work from the literature and to understand the implications of the model assumptions. We

provide basic results in section 4, where we show that, in equilibrium, whenever a period has a

sale, consumers always move to the current state of the art and purchase all feasible qualities that

they do not possess. In section 5, we examine efficient equilibria in which the monopolist sells the

upgrade in the first period that it is available. We show that the monopolist’s payoff can range

from getting all the surplus to receiving only the single period flow value of each upgrade. In

section 6, we show that equilibria can be inefficient in that the sale of upgrades are delayed (and

bundled). For inefficient equilibria, one needs to find approach conditions until there is a sale along

with support conditions. We show that there is a critical discount factor, such that the longer the

delay, the higher the discount factor must be. We offer conclusions in the final section. All proofs

are in the appendix.

2 The Model

We examine an infinite horizon, discrete time model with t = 1, 2, ...There is a continuum of

identical buyers with a measure of 1 and a single seller. A new perfectly durable good, unit t,

becomes available in each period t. All seller costs are 0. Within each period t, the seller can offer

prices for any bundle of feasible goods, current quality t and past 1, ...t− 1 qualities. For example,
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the seller could offer a bundle that includes all feasible qualities {1, 2, ...t} at a price p as well as
unbundling all qualities by offering quality {1} at price p1, quality {2} at a price p2, and so on.
Of course, the seller can withhold some qualities or even make no offer. Thus, any collection of

subsets of {1, 2, ...t} and associated prices is a feasible offer for the seller. The buyers simultaneously
respond to the seller by choosing which bundle(s) to accept in period t. In equilibrium, we will

show that a seller need only offer a single set of contiguous qualities, a bundle σ, and a price for

that bundle, pt(σ), in period t.

The flow utility that a buyer receives if he possesses units 1, ..., qt in period t is vqt. We impose

the condition that a buyer must have all lower quality units for quality qt to have value. This is

precisely the upgrade structure. Thus, if a buyer holds quality units 1 and 3 but not 2 in a period,

then she only receives a flow value v from having the first unit of quality.

Players are all risk neutral and have a common discount factor δ < 1. We assume δ ≥ 1/2 for
the main analysis (the results for δ < 1/2 are provided as a special case). Consider an arbitrary

sequence of offers, bundles and prices, for each period t. The set of current and previous bundle

purchases specifies the current set of quality units held by buyers. For any period t, define qt as

the maximal quality (contiguous units) if a buyer holds units 1,...,qt but not unit qt+1. A buyer’s

payoff is the present discounted value from quality flows net of payments from period t as given by

∞X
τ=t

δτ−t(vqτ − pτ )

Similarly, the seller’s payoff is the present discounted value of revenues from the sales of any sequence

of bundles from period t as given by
∞X
τ=t

δτ−tpτ .

Note that for any path of qualities and payments, we have the sum of buyers and the seller

payoffs as
∞X
τ=t

δτ−tvqτ

Thus, the realized joint surplus is fully determined by the quality path. Since qt ≤ t for any feasible

path and q0 ≡ 0, the joint surplus is maximized when the maximal quality that buyers have at the
end of period t is qt = t. The maximal surplus from date t is then given by

St = vt+ δv(t+ 1) + δ2v(t+ 2) + ...

=
v(t− 1)
1− δ

+ v
∞X
τ=1

τδτ−1
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=
v(t− 1)
1− δ

+
v

(1− δ)2

Note that S1 = v
(1−δ)2 is the maximal joint surplus at the start of the game. It is the surplus when

buyers acquire one new unit in each period, where each new unit has a present discounted value of
v
1−δ .

In this paper, we examine subgame perfect equilibria. For our results, it is sufficient to consider

equilibria in which (i) buyers follow symmetric strategies and (ii) a stationarity property holds. As

is standard, strategies can depend on the history of the game, which is given by the sequence of

previous seller offers and buyers’ acceptance decisions. If buyers’ strategies are symmetric, then

any two buyers with the same history must make the same current purchase decision.

In order to define stationarity, we need to introduce the notion of a state. Consider, for instance,

the start of the game. This is where the seller has one unit of quality and the buyers have no

holdings. We denote this ”state” by (1, 0). The seller can offer one unit at some price and, by

symmetry, buyers either all accept or all reject the offer. Thus, in period 2, the state is either (2, 0),

all buyers rejected the offer at date 1, or (2, 1), all buyers accepted the offer. More generally, define

the state (t,Q) by any history that leads to period t where buyers enter the period with maximal

quality level Q, (units 1 through Q).3

By symmetry, in response to the seller’s offers in state (t,Q), the buyers all move to some

higher maximal quality level, Q0, or remain at Q. Thus, we can introduce the notion of an upgrade,

meaning a bundle of quality units {Q + 1, .., Q0} to account for any buyer/seller transaction in
period t. Note that any state that a seller can achieve by offering a set of bundles, can also be

achieved more simply by offering an upgrade bundle that aggregates the purchases of buyers. By

symmetry, only one upgrade bundle is needed. That is, any equilibrium path can be implemented

via an upgrade offer structure by the seller: at each state (t,Q), the seller either delays by making

no offer or offers one upgrade level Q0 ∈ (Q+ 1, ..., t) and an associated price.

We define stationarity by the condition that players’ strategies depend only on the gap between

the maximal feasible quality, t, and the maximal quality that buyers have when they enter a period.

That is, stationarity means that if the seller offers σ units at a price p in state (t, 0) for t = 1, 2, ...,

then he must offer an upgrade from Q to Q+ σ at the same price p in state (T,Q), provided that

3By definition a state (t,Q) includes all histories where buyers may also hold any subset of the set
(Q+ 2, ..t − 1). Whether any non-contiguous quality units are transacted turns out to be unimportant for
equilibrium payoffs; see proofs for details. What matters for equlibrium payoffs and paths is when a maximal
(contiguous) quality is reached.
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Only State (t, q) Matters
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Figure 1:

the gaps coincide, T −Q = t. Furthermore, buyers’ accept/reject decisions for a given upgrade are

the same in states (t, 0) and (T,Q). This implies that the seller’s profits and buyers’ utilities satisfy

π(t, 0) = π(T,Q)

and

u(T,Q) =
vQ

1− δ
+ u(t, 0)

where T − Q = t. Stationarity implies that past prices and paths of qualities that led to state

(T,Q), do not matter to players’ strategies at state (T,Q).

Figure 1 illustrates the stationary quality path, when three units are sold every third period.

It is worth discussing our definition of stationarity in relation to stationarity assumptions in

the durable goods literature. As in GSW (1986) and Sobel (1991), stationarity implies that play-

ers’ strategies are not affected by the actions of any individual consumer (or set of measure zero

consumers). That is, each buyer is negligible in determining next period’s state; in this sense indi-

vidual buyers have no market power. Nodes where buyers are asymmetric, e.g. some buyers have

1 unit of quality and others have none, never can occur along a continuation path since buyers use

symmetric strategies. In contrast to the standard durable goods literature, mixing is not needed

to support an equilibrium.

The virtue of stationarity is that it simplifies the task of finding an equilibrium by ruling

out many forms of history dependence. As we show, the strategic behavior of buyers and sellers in
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equilibrium necessarily follows a simple cyclical structure when strategies only depend on the quality

gap. The risk with stationarity, of course, is that we are ruling out a wide range of equilibrium

payoffs. As we show, however, this is not the case in our model: every payoff that can be achieved in

equilibrium can be achieved in a stationary equilibrium. Furthermore, the definition of stationarity

is flexible enough to allow for both efficient and inefficient equilibria.

Throughout the paper, we use equilibrium to refer to a stationary, symmetric, subgame perfect

equilibrium as defined above.

3 Benchmarks for the Quality Growth Model

We begin our analysis by identifying the equilibrium outcomes for several simplified versions of our

model. These outcomes provide benchmarks that help illuminate the roles of quality growth, the

infinite horizon, and the set of buyers.

3.1 Rental Solution

Consider a market structure in which the seller can only offer one period rental contracts to buyers.

In state (t, 0), where 1 through t is the feasible set of qualities (and 0 is the status quo of buyers),

there is a unique stationary, subgame perfect, equilibrium. The seller offers t units at a price of

rt = vt and all buyers accept. Buyers are always fully extracted, since the seller can always offer

rt − ε, and it is strictly dominant for buyers to accept for any positive ε. Such an offer provides

positive flow surplus to buyers and next period’s state does not depend on the current period’s

outcome. In a rental market, the state is always of the form (t, 0), since buyers can never carry

units from one period to the next. Profits π1 =
∞X
τ=1

δτ−1rτ , coincide with the maximal joint surplus

and therefore we have an efficient outcome. The rental market outcome thus reduces to a version

of an ultimatum game in a stationary setting. Note that subgame perfection is being employed to

rule out non-credible threats in which buyers do not accept positive surplus offers.

3.2 Finite Horizon T > 1.

One of the ways that our model differs fundamentally from the earlier work on durable goods is

that buyers do not leave the market once they have made a purchase. That is, an infinite horizon

implies that buyers will always seek to acquire higher quality units. Let us consider a finite horizon

model so that the prospect of acquiring higher quality units is truncated.
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One complication with the finite horizon benchmark is that we need to specify how buyers value

their quality holdings after the final period. It is helpful to allow for the two extreme cases of (1)

units have no value to buyers after period T ; (2) each unit has a value of v
1−δ from period T+1, as if

the buyer continued to enjoy the surplus flow v(1+δ+δ2...), even though there are no transactions

with the seller after period T . Let z ∈
h
0, v
1−δ
i
denote this "scrap value" for each (contiguous)

quality unit that a buyer holds after period T .

Consider the final period. Suppose the state is (T, qT−1), where qT−1 ≤ T −1 is the quality held
by buyers at the start of period T . Then there exists a unique SGPE outcome in which the seller

offers (T − qT−1), i.e. an upgrade from qT−1 to T units, and prices the upgrade at an extraction

level. All buyers will accept the offer. The price for the upgrade is pT = (v + zδ)(T − qT−1);

the flow value of the upgrade is v(T − qT−1) and the scrap value from period T + 1 is z. Thus,

uT = (v + zδ)qT−1 and the buyers are held to their status quo utility as of the start of period T .

Now consider period T − 1 and suppose the state is (T − 1, qT−2), where qT−2 ≤ T − 2. Since
buyers know that they will not receive any incremental surplus in period T , they will only pay up

to (v + δv + zδ2) for an additional unit of quality in period T − 1. The seller clearly prefers to
sell the unit in period T − 1 rather than period T , since waiting sacrifices the flow value of today’s

consumption. Thus, there exists a unique SGPE outcome in which the seller offers an upgrade of

(T − 1 − qT−2) units at a price of pT−1 = (v + δv + zδ2)(T − 1 − qT−2) and buyers accept. As a

result, uT−1 = (v + δv + zδ2)qT−2 and the state next period will be (T, T − 1), as the seller moves
buyers to the "state of the art" in T − 1. Working backwards to period 1, the seller always offers
an upgrade to the current state of the art at an extraction price and the equilibrium path reduces

to selling each unit of quality when it is first feasible to do so. Note that this outcome does not

depend on whether we have a single buyer or a continuum of them. This outcome also prevails if

the quality units are independent goods (no upgrade payoff structure). Finally, the finite horizon

makes stationarity irrelevant. To summarize, the absence of future transactions implies that the

seller captures all of the social surplus.

3.3 Infinite Horizon, Single Buyer

Now, we consider the set of buyers and suppose that we only have a single buyer instead of a

continuum. With a single buyer, whenever he makes a purchase the state necessarily changes. We

claim that the seller will follow the efficient path, selling the new unit in each period, and price

each unit at extraction, v
1−δ . Let us start with a simple example to see why sales occur without
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delay. Suppose that there is delay and two units are sold in period 2 at price p. By stationarity,

this implies

π1 = δp+ δ2π1

and

u1 = δ (2v − p) + δ2
µ
2v

1− δ
+ u1

¶
Now, we can apply a modified version of the familiar argument of FLT (1985) to obtain a profitable

speed up deviation by the seller. Suppose the seller offered one unit at a price p̂ in period 1. If

the buyer accepts (note that by doing so the single buyer changes the continuation state), then the

seller earns π̂ = p̂+ δπ1. The buyer accepts provided that û = v − p̂+ δv
1−δ + δu1 > u1. Thus, the

deviation is profitable for the seller, π̂ > π1, and acceptable to the buyer, û > u1, provided

v

1− δ
− (1− δ)u1 > p̂ > (1− δ)π1,

as follows from the above stationarity expressions for u1 and π1. Such a p̂ exists if and only if

v

(1− δ)2
> u1 + π1. (1)

Note that the left hand side of (1) is S1, the maximal surplus. Adding the stationarity expres-

sions for u1 and π1 and simplifying we have

u1 + π1 =
1

1− δ2

∙
δ2v + δ2

2v

1− δ

¸
=

2δ

1 + δ
S1

which is less than S1 for δ < 1. Thus, the seller can profitably speed up the candidate equilibrium.

Intuitively, the buyer and seller can share the larger surplus of S1 by selling a unit in period 1

and it is simple to find a mutually beneficial price for that transaction. More generally, we always

have St > δSt+1, and the extra surplus allows us to apply a similar speed up argument to any

state (t+1, q) with a sale that is preceded by a delay. Thus, starting in any state the continuation

path must involve an immediate upgrade to the state of the art. Hence, with a single buyer, the

equilibrium path from the start of the game follows the efficient path with a sale every period.

We now argue that this must imply extraction of the buyer. For each state (t, 0) we know that

the continuation is an upgrade offer to the state of the art at price pt for payoffs of πt = pt + δπ1

and ut =
vt
1−δ − pt + δu1. Adding, the equation for the joint payoff is

πt + ut =
vt

1− δ
+ δ(π1 + u1)

We must have ut = δut+1: if ut < δut+1 the buyer would reject pt, since the t + 1 offer is more

attractive; if ut > δut+1, then the seller can raise the price and the buyer would still accept. This
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implies that u1 = δt−1ut. Substituting for ut in the equation for the joint payoff and simplifying

we have

πt =
vt

1− δ
+ δ(π1 + u1)− u1

δt−1
=

vt

1− δ
+ δ

v

(1− δ)2
− δu1

δt
.

Suppose u1 is positive. Then as t goes to infinity the required exponential growth in the buyer’s

utility will eventually push the seller’s profit below zero. Obviously this cannot happen in equi-

librium. Thus, the buyer is necessarily extracted. The above dynamic linkage of profit and utility

over time is an important consequence of surplus growth that we will return to in the analysis of

our full model.

The above argument does not extend to a continuum of buyers: an individual buyer cannot

change the state, either by delaying or accepting the seller’s offer. For example, in state (t− 1, q) if
a single buyer accepts an offer to move to the state of the art, but no other buyer accepts, then in

the next period the state is (t, q). The seller can only earn a profit by making an offer that targets

the full mass of buyers with quality q. This strongly contrasts with the single buyer case, where

the buyer fully expects the seller to target the offer to his specific quality position.

3.4 Infinite Horizon, No Growth, Continuum of Buyers.

With no growth, the model reduces to the case of a single good: the seller has one unit to offer to

buyers. Thus, when all buyers are identical we essentially have a special case of the problem studied

by FLT, who allow for buyer valuation heterogeneity. Using simpler versions of the arguments

employed above, we then find that there is never delay and buyers are always extracted in the

setting where there is no quality growth.

These benchmarks demonstrate the robustness of the seller’s market power. We now turn our

attention to our model, where there is an infinite horizon, growth in quality, and a set of buyers

who never leave the market to show how the necessity of extraction breaks down and moreover may

lead to almost a complete loss of his market power.

4 Preliminary results

We will provide an explicit equilibrium construction of the buyers and seller’s strategies. To stream-

line the analysis, we will assume that an individual buyer who deviates by not following other buyers

in a purchase that increases the maximal buyer quality, will obtain no future additional surplus.

Thus, if an individual buyer has the first k units of the good, when all other buyers also have
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additional contiguous units, then the deviating buyer’s continuation payoff is vk
1−δ . There are two

interpretations of this continuation payoff. First, the seller ignores individual buyers, measure zero,

who differ from the market path. Thus, the missing units necessary for the buyer to benefit from

further purchases will never be offered. Alternatively, the seller can always make the necessary

units available, thus allowing the individual buyer to achieve parity with other buyers, but price

the units at an appropriate upgrade price, so as to extract all the continuation surplus. As we

will see from the equilibrium construction, it is also possible to allow for higher buyer continuation

values as long as they do not exceed the equilibrium payoff. It will be clear, from the range of

payoffs that are supported in equilibrium, that this is an inessential assumption for the equilibrium

construction.

The upgrade structure is important for the continuation value of a deviating buyer. Suppose

instead of upgrades, the seller is constrained to offer bundles that contain all lower qualities. Then,

an individual buyer who lacks previous quality increments always has the option of restoring his

position vis a vis other buyers when they make a future purchase. Whenever buyers with a higher

status quo quality level are willing to purchase future units, then the deviating buyer will have a

strict preference to make such a purchase since he has fewer units. In this setting, a continuation

value in excess of current holdings is a necessary property. In any equilibrium without the upgrade

structure, buyers cannot be fully extracted. Thus, the upgrade structure does not impose such a

direct limit on the seller’s market power.

We now provide some basic results that will serve as building blocks for the main analysis.

First, we show that by pricing at a very low level relative to v, the seller can induce buyers to make

a purchase.

Lemma 1 (Flow Dominance) Consider any history such that, at the start of period t, all buyers

hold the first Q quality units, where Q ≥ 0, and no buyer holds unit Q+ 1, where t > Q. Suppose

the seller makes an upgrade offer for units {Q+ 1, ..., t} at price p, where p < v(t−Q). Then, in

any continuation, every buyer accepts the upgrade offer.

The intuition for “flow dominance” is simple. The upgrade from Q to t is priced sufficiently

low that that it pays for itself in the current period, since vt − p > vQ. Moreover, even if all

other buyers were to reject the offer, an individual buyer who accepts is always weakly better off

in the future. This follows from (1) the upgrade payoff structure, since an accepting buyer has

a flow surplus of at least vt in future periods, and (2) all buyers have the same opportunities for
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purchasing from the seller, so an accepting buyer always has the option of making the same choices

in the future as other buyers. Essentially, a buyer who holds all of the first t units in period t+ 1

is never at a disadvantage relative to any other buyer.

It then follows directly that the seller must have a positive payoff both at the start of the game

and at any point in the future. This is due to quality growth and flow dominance. At any point in

time, the seller always has the option of offering a bundle that includes the new quality unit at a

(flow dominant) upgrade price.

Lemma 2 In any equilibrium, the payoff of the seller is at least v/(1 − δ). For any history in

which all buyers hold quality units {1, ..., Q} and no buyer holds unit Q+1 at the start of period t,
the continuation payoff of the seller is at least v(t−Q) + δ v

1−δ .

It is important to note that the above results are very basic and, as the proofs demonstrate,

they do not depend on stationarity or symmetric buyer strategies. This provides a reference point

for our equilibrium construction with stationarity and buyer symmetry: we know that, in any

equilibrium, the payoff for the seller can never fall below v/(1 − δ). With this reference point in

place, the subsequent analysis will always employ stationarity and symmetry.

A simple consequence of a positive seller payoff in any continuation is that the quality gap never

grows without bound. That is, all new quality units are eventually sold within some fixed number

of periods.

Lemma 3 In an equilibrium, for any state (t,Q), the continuation path has a bounded quality gap.

Now, we show that stationarity implies that equilibria must have a simple cyclical structure.

To see this, we introduce the notion of a t-cycle equilibrium. In a t-cycle equilibrium a sale occurs

every t periods, and t units are sold in each sale period. Thus, the states (1, 0) through (t − 1, 0)
are delay states with no sales, and state (t, 0) has a sale of units 1 through t. Hence, once a sale

occurs in state (t, 0), the gap falls to 1 and the state returns to (1, 0). Note that this includes as

a special case the possibility that t = 1, where the current quality unit is sold to buyers in every

period.

Proposition 4 Every equilibrium follows a t-cycle equilibrium path: the buyers purchase quality

units {1, ..., t} from the seller in state (t, 0), all payments to the seller occur in state (t, 0), and the

maximal buyer quality is zero until period t.
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What makes this argument work is flow dominance and the fact that the seller can profitably

deviate by speeding up a cycle that does not have buyers moving to the state of the art in (t, 0).

Thus, if the sale to buyers only involves τ < t units, the seller can feasibly offer these units in state

(t− 1, 0). By pricing these units at bp = vτ + δp− ε, where p is the price for τ units in state (t, 0),

a seller improves his payoff if all the buyers accept since

p̂+ δπ(t, τ) > δ [p+ δπ(t+ 1, τ)]⇔
(vτ + δp− ε) + δ2π(t+ 1, τ) > δp+ δ2π(t+ 1, τ)⇔

vτ > ε

where we have substituted for p̂ and the fact that (t, τ) is a delay state.

The candidate equilibrium cannot have buyers rejecting this offer. If other buyers reject, an

individual will always find it optimal to purchase the deviation offer (for small ε > 0). By accepting,

an individual buyer receives δu(t, 0)+ ε. To see this, note that the deviating buyer does not change

the state, so τ units will be offered next period. Since the buyer already has these units, the

purchase in period t can be skipped and the buyer will have the same holdings as all other buyers

as of t+ 1. Thus, we have

vτ − δp̂+ δvτ + δ2u(t+ 1, τ) > δ [vτ − p+ δu(t+ 1, τ)]⇔
vτ > p̂− δp = ε

Thus, her payoff is improved relative to waiting whenever ε > 0. Hence, all buyers rejecting the

offer is not an equilibrium continuation. But, as we showed above, when all buyers accept the offer

the seller can profit from making the deviation offer. Thus, an equilibrium with sales of τ less than

t cannot be supported, since either the seller can profitably speed up or buyers are required to

reject a dominating offer.

By contrast, the speed up argument does not apply to a t−cycle equilibrium when t > 1 for

two reasons. The first is feasibility. The seller does not have t units to sell in period t− 1. Second,
an individual buyer who accepts the deviation offer in t − 1 is not in an analogous position. By
acquiring t− 1 units when no other buyers accept, an individual buyer can no longer safely skip all
purchases in state (t, 0), since other buyers will be acquiring units 1 through t. For example, if the

seller only offers the bundle of units 1 through t, then the deviating buyer will either have to buy

the same bundle as the other buyers and pay for the t− 1 units that were previously purchased or

14



remain at a utility level of v(t−1)
1−δ . As we will show later, this may make it much less profitable for

a seller to induce a speed up.

To summarize, a seller must either sell units as soon as they are feasible, thus following the

efficient path, or delay to a maximal set of units periodically, inducing an inefficient path. We

study the efficient path next, and then the inefficient path in a subsequent section.

The t−cycle equilibria and stationarity allow us to introduce the following simplified notation.
Because prices and hence profits depend only the gap between maximal feasible quality available

and the buyers’ quality position, we can define π(T,Q) = π(T − Q, 0) ≡ πT−Q for the seller and

u(T,Q) = vQ
1−δ + u(T −Q, 0), with u(T −Q, 0) ≡ uT−Q, for the buyers.

5 (1,0) Efficient Equilibria

In an efficient equilibrium, a good is sold in each period when it first becomes available. In a

stationary equilibrium, this occurs at price p1 in each period. Thus, the firm’s profits and consumers’

utilities are π1 =
p1
1−δ and u1 =

1
1−δ

h
v
1−δ − p1

i
, respectively. In an efficient equilibrium, the firm

and the consumers divide the maximal social surplus: S1 =
v

(1−δ)2 = π1 + u1.

To derive the equilibrium payoffs, we must make sure that players cannot do better by devi-

ating.4 To know that a deviation cannot be profitable, we must specify the continuation payoffs

from state (2, 0) and other ”off-equilibrium path” states. By stationarity and Proposition 4, we

must follow a t−cycle and every continuation state’s payoff can be determined once we specify the
continuation payoffs in all states of the form (τ , 0). We construct continuation payoffs so that in

all states (τ , 0), the seller offers τ units at a price pτ and this is accepted by all buyers. Thus, the

next state is (τ + 1, τ), which returns the quality gap to 1; thus, formally the players are back on

the equilibrium path of (1, 0). The payoffs with a cash-in support at (τ , 0) are πτ = pτ + δπ1 for

the seller and uτ = vτ − pτ + δu(τ + 1, τ) = vτ
1−δ − pτ + δu1 for the buyers. Note, that from (τ , 0)

this is the efficient path and therefore we have Sτ = vτ
1−δ + δS1 = πτ + uτ .

For a continuation equilibrium to follow this cash-in support, we must specify the accompanying

buyer and seller strategies. The seller has three ways of deviating from the equilibrium path of

selling τ units in state (τ , 0) at price pτ . The first option is to make no offer, “a delay,” which

4We apply the one-stage-deviation principle to find the set of subgame perfect equilbria; our model
conforms to the necessary requirement of ”continuity at infinity,” since the limit of tδt is 0 as t goes to
infinity (see Fudengberg and Tirole (1991) pp. 108-110).

15



necessarily leads to state (τ + 1, 0) and buyers make no decision. The second option is to offer an

upgrade of less than τ units, “a partial cash-in.” The final option is to offer an upgrade of τ units

at a price different from pτ . It must be optimal for the seller to follow the strategy of offering τ at

the price pτ in state (τ , 0). For buyer strategies in state (τ , 0) we specify a simple cut-off rule: a

buyer accepts the seller offer of price p for σ units in state (τ , 0) if and only if p ≤ p(σ, τ). Thus,

we must find both the "cash-in" price pτ for all τ ≥ 1 and cut-off rules p(σ, τ) for all σ ≤ τ , where

τ ≥ 1.

We can support high buyer surplus in the efficient (1, 0) path, even though subsequent outcomes

also involve an immediate sale. This may be surprising, since the seller knows that buyers will

purchase the state of the art next period, and due to discounting would seem to have a profitable

speed up opportunity in addition to the added flow value of a purchase today which he could

extract. As we will see, when total surplus is growing over time, this logic is not correct, which

is quite different than (FLT). That is, we don’t need the threat to destroy surplus, an inefficient

outcome, to generate high payoffs for buyers. An inefficient support by a delay would eventually

break down, since the seller would have an incentive to cash-in once the continuation surplus St is

large enough. Thus, we use efficient supporting outcomes.

First, we derive the buyer cut-off strategies. Each buyer must accept any offer p ≤ p(σ, τ),

given that all other buyers are accepting the offer (symmetric strategies). When all other buyers

accept the offer, an individual buyer earns vσ − p + δu(τ + 1, σ) by accepting, where as rejecting

yields 0 by assumption. Thus, it is an equilibrium for all buyers to accept p for σ units in state

(τ , 0), if vσ − p+ δu(τ + 1, σ) ≥ 0 or equivalently vσ
1−δ + δu(τ + 1− σ, 0) ≥ p. Analogously, it must

be the case that an offer of p > p(σ, τ) is rejected by all buyers. Rejecting the offer when all other

buyers reject it, yields a payoff of δu(τ+1, 0). Accepting an offer when all other buyers reject yields

a flow vσ − p today plus the option of purchasing the "continuation offer" of τ + 1 next period.

Thus, an individual buyer optimally rejects if δu(τ + 1, 0) > vσ − p+ δmax
n

vσ
1−δ , u(τ + 1, 0)

o
. It

is convenient to define g(σ, u) ≡ vσ+ δmax
n

vσ
1−δ , u

o
− δu as the "net surplus" value of the option

for a buyer if he makes a purchase when the other buyers do not. When the other buyers purchase

in period τ + 1, the buyer has two options. If u > vσ
1−δ , he will make the purchase when the other

buyers do, and thus is willing to pay at most the flow value of the units, vσ. Otherwise, he will

not make the purchase and thus be willing to pay up to vσ
1−δ − δu. Thus, recalling our notational

convention u(τ , 0) = uτ , the buyers’ cut-off strategy must satisfy

g(σ, uτ+1) ≤ p(σ, τ) ≤ vσ

1− δ
+ δuτ+1−σ (2)
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for all 0 < σ ≤ τ and all τ ≥ 1. Thus, the cut-off strategies apply to full (σ = τ) and partial (σ < τ)

cash-in offers. Since g(σ, u) is less than or equal to vσ
1−δ , the buyers’ cut-off strategies always exist.

The right hand side of (2) says that prices must be low enough so that rejection is not optimal

for an individual buyer, while the lower bound, which is related to flow dominance, says that it is

always optimal to accept offers below this level. Note that g(σ, uτ+1) is at least as large as vσ; flow

dominance says that a buyer is always willing to pay at least vσ.

Given these buyer responses, the seller must find it optimal to offer τ units at price pτ in state

(τ , 0). Beginning with partial cash-ins, note that p(σ, τ) is the optimal price choice for any such

offer and it generates a payoff of p(σ, τ) + δπ(τ + 1, σ). This implies that for an equilibrium

πτ − δπτ+1−σ ≥ p(σ, τ) (3)

for σ = 1, ...τ − 1.

The other two deviations are delay and offering τ units at a price different than pτ . Delay,

σ = 0, is not optimal if πτ ≥ δπτ+1. Defining p(0, τ) ≡ 0, (3) applies. Finally, consider a cash-in
offer of τ units. Buyers will accept any price below p(τ , τ), so we must have pτ = p(τ , τ) or else the

seller could successfully offer a price above pτ . In other words, buyers must reject any price above

pτ for τ units. Note that (3) holds with equality by construction of the equilibrium continuation.

Now we are ready to combine the buyer and seller support conditions, expressions (2) and (3),

and identify when there exists supporting prices p(σ, τ), such that the cash-in outcome constitutes

a continuation equilibrium. Note that the conditions also apply at τ = 1 for σ = 0 (delay) and

σ = 1 (the equilibrium path).

Combining the seller profit expression (3) with the buyer lower bound on prices, the following

condition must be satisfied:

πτ − δπτ+1−σ ≥ p(σ, τ) ≥ g(σ, uτ+1).

If we can find a price that satisfies the above bounds, then we know we can find one that satisfies

the upper bound in (2) as well. Recalling that Sτ = πτ +uτ , we can find supporting prices provided

that

Sτ − δSτ+1−σ ≥ uτ − δuτ+1−σ + g(σ, uτ+1). (4)

Note that the surplus difference on the left hand side is an exogenous sequence that is increasing

in τ . So, as τ grows larger, more units are "on the table" and a larger set of payoff utilities can be

supported. Thus, an equilibrium exists if the following lemma holds:
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Lemma 5 Suppose the sequence of buyer utilities uτ satisfies (4) for all (σ, τ) where 0 ≤ σ ≤ τ

and τ ≥ 1. Then there exists an efficient equilibrium with supporting prices p(σ, τ).

The support must hold for all states, which the seller can control by the choices of bundles that

he offers. In particular, it must hold for delay states, where σ = 0, for cash-in states, where σ = τ ,

and for partial cash-in states, where σ ∈ (1, τ − 1).

We will show that any buyer utility level u1 ∈ [0, δS1] can be supported as an equilibrium payoff
for any δ ≥ 1/2. That is, the seller may be limited to only the flow payoff of v per period which has
a present discounted value of v

1−δ . Thus, the seller may only receive the minimum possible payoff

(flow dominance). For each u1 payoff, we will construct an associated supporting path of u2, u3...

such that the seller will find it optimal to make an acceptable offer to achieve a cash-in outcome

in every state. To gain some intuition for how to support this set of u1 payoffs, we first look at

two special cases of support level utilities. First, we assume that the buyers’ support utilities are

constant, e.g. u1 = u2 = ... = u. This means that the seller gets all the gains from the surplus

growing. What we will show is that this gives the seller an incentive to delay whenever the buyers’

utility exceeds v
1−δ , which is less than δS1 for δ > 1/2. To see this, use the support condition (4)

at τ = 1 and σ = 0, that is a delay in period 1. Simplifying (4), this becomes

S1 − δS2 ≥ (1− δ)u

or
v

1− δ
≥ u.

The above inequality is violated if v
1−δ < u. Since the seller is the residual claimant of surplus, the

loss from delay is just v. On the other hand, the gain from delay is the saving in utility given to

buyers of (1 − δ)u. If u > v
1−δ , the seller prefers to delay and earn δ (S2 − u) rather than S1 − u

from selling today. The discounted share of a larger residual will always dominate once u becomes

large enough. This is a direct consequence of the growth in surplus due to quality improving.

What this example shows is that the buyers’ utilities must be increasing to support higher levels

of utilities. Suppose that the buyers’ utilities are always increasing, such that the seller is always

indifferent between delay and cashing-in, i.e. the support condition holds with equality at σ = 0

for all τ . Using the support conditions (4), we ask how fast can utilities grow. Let σ = 0, which

implies g(σ, uτ+1) = 0 and (4) becomes

uτ+1 ≥ uτ − Sτ + δSτ+1
δ
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or the seller is indifferent between cashing-in in period t and delay in t+ 1 if

uτ+1 =
uτ − vτ

δ
. (5)

The support condition for σ = t is

St − δS1 ≥ ut − δu1 + g(t, ut+1).

For t sufficiently large, it is straightforward to show that g(t, ut+1) = vt
1−δ − δut+1, since 1 > δ+ δt.

That is, vt
1−δ > δut+1 for t sufficiently large. Then the support condition requires that

δu1 ≥ vt

which is violated for t sufficiently large.

What is happening here is the following. The utility growth for the buyers is ut − δut+1 = vt.

On the other hand, the available surplus in t + 1 versus t, is St+1 − St =
v
1−δ . For t sufficiently

large, the present value of the buyers’ utility must fall if there is no agreement in period t to make

the seller indifferent between selling in period t and delaying until period t + 1. This allows the

seller to raise his price.

Thus, we need a support that is increasing, but cannot be increasing either too fast or too long

to generate the set of utilities u1 ∈ [0, δS1] for any δ ≥ 1/2.Now, we generate a sequence of support
utilities for buyers and a set of cut-off utilities. The support combines aspects of the two special

cases of supports that we just examined. From state (1, 0) to (T, 0), the support will make the seller

indifferent between cashing-in in a period and delaying until the following period, while in bigger

states the buyer’s utility will be constant at uT . Thus, this is a combination of the two example

supports that we just discussed. The support utility sequence is defined by

uτ = vτ + δuτ+1 for τ = 1, ...T − 1 (6)

and

uT = uT+1...

Clearly, uτ+1 is increasing in uτ and all uτ are increasing in u1. In particular, for a given u1, then

the sequence (u2, ..uT ) is determined. We define a sequence of utilities that satisfy (6) and where

uτ = uT for τ > T as a T-stage support. In particular, the higher u1 or the larger δ, the longer

the period of time that the support utilities must be strictly increasing to implement the higher

payoff.
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A direct consequence of a T-stage support is that we only to need to satisfy the support con-

straints, equations (4), over the range τ = 1, ...T . This is because, when (4) holds at τ = T ,

then it necessarily holds at all larger τ whenever the buyer utility remains constant at any level u.

Formally, we have

Lemma 6 Suppose uτ = u for τ ≥ T . If the support condition (4) holds at τ = T for σ = 0, ..., T ,

then (4) holds at τ > T for σ = 0, ..., τ .

Thus, an advantage of a T-stage support is that we only have to check a finite set of conditions.

That is, the nature of the support when the buyer’s utilities are a constant is relatively straight-

forward to satisfy. We generate two associated lemmas to show the result. The first one allows us

to show that if the support works in period τ for all sales σ that are large enough to put the state

back in the range where the value of buyer utility is rising, then the support works the next period

τ + 1 for any sales σ0 that also induce a state where the value of buyer utility is rising. The next

lemma demonstrates that if there are only enough sales to buyers such that the continuation state

has a constant buyer utility, then the support holds if it holds at σ = 0 (delay). We will return to

the intuition for this lemma when we consider why the seller prefers to cash-in in period T rather

than delay.

Using our T − Stage Support we have πτ = δπτ+1 for all τ < T . This follows directly from

simple algebra. As with the second support example (rising utility), for periods up to T , the buyers

are getting all the efficiency gains from the early cash-in, vτ . This can be seen by noting that the

efficiency gain is precisely Sτ − δSτ+1 = vτ . Since the difference between uτ and δuτ+1 is exactly

vτ , the difference between πτ and δπτ+1 must be 0. The cash-in outcome always divides the surplus

of Sτ between the buyers and the seller. The payoff to the seller gets larger over time, but this is

exactly offset by the discount factor δ.

For τ ≥ T , we have πτ > δπτ+1, provided that u1 ≤ (1− δT )S1. It is instructive to understand

why the qualification is necessary for πτ > δπτ+1 to be satisfied. For periods T and after we ask

the question: when does the seller want to cash-in immediately as opposed to waiting to make a

sale? The buyers’ payoff is now fixed at uT and never changes. So, the seller can give the buyers

uT now or wait and give them that same payoff next period. Thus, the cost of selling today instead

of next period is (1− δ)uT . The benefit of selling today is the efficiency gain vτ = Sτ − δSτ+1. So,

cashing now is more profitable than waiting to cash-in tomorrow when

vτ > (1− δ)uT . (7)
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Otherwise, waiting is better.

Observe that once the seller prefers cashing in now to waiting, he will always prefer to cash-in

immediately in any future period. So, vT > (1 − δ)uT is necessary and sufficient for the seller to

have a strict preference for cashing in now from period T onwards.

The following lemma formalizes the above observation by showing that the cash-in constraints

are then sufficient for T−stage support to work, provided that we keep the buyer payoffs large in
the initial phase and the first time the seller has a strict preference for a cash-in is when we are in

state (T, 0).

Lemma 7 Consider a T -stage support with (i) uτ ≥ vτ
1−δ for τ = 1, ..., T − 1 and (ii) v(T−1)

1−δ <

uT < vT
1−δ . If the support condition (4) holds at (τ , τ) for τ = 1, ..., T , then the T -stage support

satisfies (4) for all (σ, τ), where 0 ≤ σ ≤ τ and τ ≥ 1.

Thus, we only need to check the support conditions with respect to cash-in outcomes, σ = τ .

To see when the support conditions (4) holds, we use the properties of the T − Stage Support.

Clearly from (6) there is a direct relationship between u1 and uT . By simple algebra, u1 = (1−δT )S1
implies uT = vT

1−δ . As (7) demonstrates, a higher level of buyer utility cannot be supported by a

T − Stage Support, since the seller would strictly prefer to delay a sale all the way until state

(T+1, 0) instead of selling in state (1, 0). For u1 < (1−δT )S1, the T−stage support always has the
property that the seller strictly prefers to cash-in once period T arrives. We will show with T = 1,

we can support an outcome with buyer payoffs in the interval
h
0, v
1−δ
i
. With T = 2, the intervalh

v
1−δ ,

v(1+δ)
1−δ

i
is supported. In general, at T we support the interval

h
v(1+...δT−2)

1−δ , v(1+...δ
T−1)

1−δ
i
, which

is equivalent to [(1− δT−1)S1, (1− δT )S1].

The outline of the proof to show that we can support every u1 ∈ [0, δS1] is as follows:

• Pick a utility level u1 between 0 and δS1.

• If u1 ≤ v
1−δ , then set uτ = u1 for all τ > 1.

• If u1 ∈
h

v
1−δ , δS1

i
, set u2 =

¡
u1−v
δ

¢
.

• If δS1 < v(1−δ2)
(1−δ)2 , set uτ = u2 for all τ > 2. If not, set u3 =

¡
u2−2v

δ

¢
and continue.

• Keep following the logic until T where δS1 ≤ v(1−δT )
(1−δ)2 .
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Figure 2:

The discount factor δ determines how large T must be in order to cover the entire range of

buyer payoffs [0, δS1]. To see this, we first define a set of critical δ cutoffs: let δτ be the root of
δτ

1−δ = 1 for δ ∈ (0, 1).

For now, and future reference, Figure 2 illustrates the relationship between u1, δ, and T . For

example, when 1/2 < δ < δ2, we use a 1−stage support for u1 < v
1−δ and then a 2−stage support

for larger u1. Because the δS1 curve is below the v
¡
1− δ2

¢
/ (1− δ)2 curve, we have covered all

possible buyer payoffs. In the next range for δ, we must also use a 3−stage support to cover the
full range of buyer payoffs. As δ continues to rise, we use the critical δ cutoffs to identify the the

appropriate length for the t−stage support.

We use the T−stage support in two cases: a) when δ ∈ (δT−1, δT ] and b) when δ > δT . When δ

is in the first range, then the largest buyer payoffs can be supported. If δ is in the larger range, then

smaller buyer payoffs can be supported with a T − Stage support. The larger the level of δ, the

larger T must be to achieve the maximal buyer utility level. We deal with smaller δ by implicitly

using a smaller T in the induction proof.

We have ¡
1− δT

¢
S1 ≶ δS1 ⇔ 1 ≶ δ + δT

So, applying our two cases, we see that δ > δT−1 implies that δ + δT−1 > 1 and we then have¡
1− δT−1

¢
S1 < δS1. So, our feasible set of u1 choices in stage T is always u1 ∈

£¡
1− δT−1

¢
S1, δS1

¤
.
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In case (a), we have δT−1 < δ < δT ⇒ u1 < u1 < δS1 <
¡
1− δT

¢
S1. So , by Lemma 19, we

have uτ > vτ
1−δ for all τ = 1, ...T − 2 and uT−1 = uT =

v(T−1)
1−δ . As we increase u1 from u1 all the

other utilities uτ grow and at u1 = δS1 we have
v(T−1)
1−δ < uT < vT

1−δ , since δS1 <
¡
1− δT

¢
S1 when

δ < δT . So, the entire set of u1 ∈ [u1, δS1] are covered.

In case (b), we have δ > δT ⇒ u1 < (1 − δT )S1 < δS1. By Lemma 19, uτ > vτ
1−δ for all

τ = 1, ...T − 2 and uT−1 = uT = v(T−1)
1−δ . As we can increase u1 up to (1 − δT )S1 we obtain

uT−1 = vT
1−δ − v and uT =

vT
1−δ . If u1 ∈

£
u1, (1− δT )S1

¤
, then we are done. Otherwise, to reach

higher utility levels, u1 ∈
£
(1− δT )S1, δS1

¤
, we need to go to a higher T .

Proposition 8 Consider a T−stage support and suppose that δ + δT−1 ≥ 1. Let u1 lie between¡
1− δT−1

¢
S1 and

¡
1− δT

¢
S1. Then, the support condition (4) holds for all (σ, τ) where 0 ≤ σ ≤ τ

and τ ≥ 1. Thus, every u1 ∈ [0, δS1] can be supported in equilibrium if δ ≥ 1/2.

An immediate corollary is

Corollary 9 In the limit, as δ → 1 , the seller’s minimum share of the surplus goes to zero.

In the bargaining literature it is often the case that there is a mathematical equivalence between

a model with a seller facing a single buyer whose type lies in a continuum and a seller who faces a

continuum of agents where each one is a different type. This is because once an agent has accepted

the offer, then they leave the game. This is not true in the model that we examine, since buyers

do not leave the game once they accept a seller’s offer. Since buyers remain in the game, their

purchasing decisions can be implicitly and repeatedly coordinated over time. This can be seen by

comparing our work with FLT (1985).

5.1 Infrequent Upgrades: δ < 1/2

A period in our model corresponds to the length of time before the next unit of quality can feasibly

be offered by the seller. The discount factor then reflects not only the rate of time preference but

also the frequency of innovation. Thus, when the discount factor is small we have a setting in

which upgrades are relatively infrequent. This suggests that flow dominance will play a stronger

role since the flow value of a unit of quality, v, is larger relative to the future discounted value of

the unit, δv
1−δ . In turn, this raises the possibility that the market power of the seller is greater when

δ is small.
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The value δ = 1/2 is a threshold in the sense that a buyer is indifferent between one unit today,

with value v
1−δ , and two units next period, with value

2δv
1−δ . When δ < 1/2, a buyer necessarily

values one unit today more than two units tomorrow, other things equal. Stated a bit differently,

given a prospect of receiving two units tomorrow free of charge, there is always a positive price

that a buyer would be willing to pay to acquire, instead, one unit today. This immediately implies

that the seller will necessarily be able to induce a ‘speed up’ in a number of situations where it not

possible to do so when the discount factor is larger than 1/2. As we show in the next section, it

rules out the possibility of delay in equilibrium when δ < 1/2.

The increased power of flow dominance, the driving force behind the speed-up argument, does

not, however, imply a necessary increase in market power for the seller. We are still able to support

efficient equilibria in which buyers receive any payoff u1 ∈ [0, δS1] and, as a result, the range of
equilibrium payoffs for seller continues to include the flow dominance lower bound. The speed-

up argument does change the qualitative nature of the equilibrium support. In particular, no

equilibrium can be supported with a constant buyer continuation payoff (i.e., u1 = u2 = ... = ū);

the relatively low continuation value implies that buyers will not reject a deviation offer of a price

above p1 (for the candidate u1). Instead, equilibrium requires a relatively high continuation payoff

for buyers so that the seller cannot successfully increase price in period one.

The following proposition formalizes the above argument.

Proposition 10 Suppose δ < 1/2. Then any u1 ∈ [0, δS1] is supported as a buyer payoff in an
efficient equilibrium with a continuation utility of uτ = ū ≡ 1−δ

δ u1, for all τ ≥ 2.

The limiting case of δ = 0 provides a useful reference point for market power. Intuitively, as the

discount factor falls the value of the future sequence of innovation upgrades declines (innovation

occurs less frequently) and the current flow value of v comes to dominate the future surplus of δS1.

In the limit, when δ = 0 and δS1 = 0, we have a unique equilibrium outcome in which π1 = p1 = v

and u1 = 0. Formally, this is now equivalent to a static model and the seller is able to extract

all surplus from the buyers. Thus, the flow dominance lower bound on the seller’s payoff can be

viewed in terms of limiting the seller’s market power to that of a static monopolist who derives no

added value from the upgrade market.
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6 Delay and Inefficient Equilibria

Now, we show that equilibria do not necessarily have to be efficient. Due to Proposition 4, every

equilibrium is a t−cycle equilibrium. Thus, we examine equilibria when t ≥ 2. On the equilibrium
path, there are no sales in periods 1 through t−1, and then a sale of t units at a price pt in period t.
Thus, states (1, 0) through (t−1, 0), are ”delay states.” The continuation state after the sale is then
(t+1, t) which is equivalent to state (1, 0). The payoffs in a t−cycle equilibrium are then πt = pt

1−δt

for the seller, since he collects the revenues of pt once every t periods, and ut =
1

1−δt
h

vt
1−δ − pt

i
for

the buyers, since a purchase is made once every t periods and each purchase is for t units at a price

pt. Because of delay, the realized joint surplus in a t− cycle equilibrium is less than the maximal

surplus S1. Furthermore, the continuation path in a t − cycle equilibrium always has a smaller

surplus than the efficient surplus for any state (t, 0). Letting Ψt be the realized joint surplus at the

time of a sale, we have the equilibrium relationship

πt + ut =
vt

(1− δ)(1− δt)
≡ Ψt,

Note that Ψ1 = δt−1Ψt, Ψ2 = δt−2Ψt and so on for all delay states. The same pattern holds for

seller profits and (incremental) buyer utilities.

6.1 Delay Equilibria and Upgrade Frequency

An inefficient equilibrium requires that no sale occurs until period t > 1. What prevents the seller

from profitably deviating to make a ‘speed-up’ offer? Suppose the seller were to offer a bundle of

t − 1 units for a price of p̂ in state (t− 1, 0). If all buyers reject such an offer, then a deviating
buyer would accept if

v(t− 1)− p̂+ δmax

½
v(t− 1)
1− δ

, ut

¾
> δut.

Intuitively, if δut is relatively small then this will hold and the offer of p̂ would necessarily be

accepted by all buyers in any symmetric equilibrium. Would the offer then be profitable for the

seller relative to delaying and selling in the next period? When δ < 1/2, this is necessarily the case.

Proposition 11 Suppose δ < 1/2. Then there does not exist an equilibrium with delay.

When δ < 1/2 both the seller and the buyers value current flows more heavily than future

ones. Intuitively, upgrade innovations are sufficiently infrequent that a mutually beneficial speed-

up deviation to avoid delay is possible. An individual buyer with t − 1 units on hand would not
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purchase the t bundle in state (t, 0) and this makes the seller’s speed-up offer for t − 1 units in
state(t − 1, 0) attractive to an individual buyer. When all buyers accept, the current revenue

dominates the payoff from waiting to sell in the next period.

The longer the delay, the easier it is to find a speed-up deviation for a given δ. That is, as the

delay t rises, a speed-up deviation destroys a delay equilibrium for a range of δ that exceeds 1/2.

This suggests that for a given delay, we will need a sufficiently high discount factor to support the

equilibrium: as feasible upgrades become more frequent, it is possible that they are bundled on the

equilibrium path.

6.2 Existence of Delay Equilibria

To derive the equilibria, we must have delay and thus starting from a state (1, 0) we need to specify

approach conditions for the equilibrium. The approach conditions mean that the seller finds it

optimal to not offer any goods until the state is (t, 0). For the buyers, we must specify cut-off rules

of when to accept offers of σ units up to period t. Given the prices that buyers are willing to accept,

the seller must prefer to delay making such an offer until period t . Note that it is never credible

for buyers to reject all seller offers due to flow dominance.

The buyers’ cut-off rules in periods up to t are to reject any price greater than p(σ, τ), where

p(σ, τ) satisfies

vσ(1− δt−τ )
(1− δ)

+ δt−τ max
∙

vσ

(1− δ)
, ut

¸
− δt−τut ≤ p(σ, τ) ≤ vσ

(1− δ)
+ δt−(τ−σ)ut, (8)

where we have used δt−(τ−σ)ut = u(τ +1−σ, 0). The left hand side of (8) represents the difference

in gross surplus for an individual buyer between buying the offer and rejecting it, since other buyers

are expected to reject and hence he believes the state will be (τ +1, 0). The first term is the buyers

flow payoff of receiving σ units and the second terms represents his option of either not buying

or buying with the other buyers, once the state reaches (t, 0). The right hand side represents the

difference for an individual buyer between buying and not buying the package, given that all other

buyers are expected to buy the package and the state will be (t + 1, σ). Note that we have used

δt−τut = u(τ + 1, 0) and δt−(τ−σ)ut = u(τ + 1 − σ, 0), since the first sale along the equilibrium

path occurs in state (t, 0). Clearly, there exists a set of prices that satisfy (8). This is due to the

coordination among buyers.

As with the analysis of the efficient path, we need to find a set of prices such that the seller

would prefer not to deviate. There are, however, additional approach conditions for the seller in the
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inefficient equilibrium. In state (τ , 0) for τ < t, it must be that the seller prefers the equilibrium

path payoff of πτ = δt−τπt to selling σ units in period τ at a price of p = p(σ, τ) and receiving a

payoff of p(σ, τ) + δt−(τ−σ)πt. In other words, we must have

δt−τ (1− δσ)πt ≥ p(σ, τ) for σ = 1, ..., τ and τ = 1, ..., t− 1. (9)

We now provide the following lemma which greatly simplifies the buyer and seller approach condi-

tions.

Lemma 12 If the buyer and seller approach conditions, (8) and (9), hold for σ = τ , at each

τ = 1, ..., t− 1, then the conditions hold for all feasible pairs (σ, τ).

P roof. Beginning with the seller approach conditions, (9), note that δt−τ is strictly increasing

in τ . Thus, we can set p(σ, τ)=p(σ, σ) and the condition holds for σ < τ . Now, for the buyer

approach conditions, (8), note that the right hand side is increasing in τ . We claim that the left

hand side is decreasing in τ . When vσ
(1−δ) ≥ ut, then the left hand side is vσ

(1−δ) − δt−τut, which is

falling in τ . If vσ
(1−δ) < ut, then the left hand side is

vσ(1−δt−τ )
(1−δ) , which is also strictly decreasing in

τ .

Thus, the lemma shows that we need only find t − 1 distinct prices, p(1, 1), ..., p(t − 1, t − 1).
Intuitively, it is sufficient to deter the seller from selling the maximum units as soon as possible,

the "cash-in constraint".SOME ECONOMICS FOR THIS For example, if the seller does not offer

one unit in state (1, 0), then he will not be tempted to consider selling one unit in a later state.

Lemma 13 In any inefficient t− cycle equilibrium it is necessary that ut > 0. Thus, buyers must

receive positive utility.

P roof. Note that when ut = 0, for any deviation offer by the seller in period τ for σ units,

the condition (8) immediately reduces to p(σ, τ) = vσ
(1−δ) . Thus, take σ = τ = t − 1 and consider

condition (9). Since πt = Ψt, when ut = 0, we have

δ(1− δt−1)Ψt ≥ v(t− 1)
(1− δ)

⇔ 1− δt

1− δ
≥ t

after simplification. Clearly, this is always false for t ≥ 2 and any δ.

The intuition for this result is quite simple. The buyers’ approach condition at ut = 0 says

that the buyers will always accept any offer that gives them positive utility. Thus, the seller can
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always make sales that extract buyers in periods before period t by speeding up sales and increase

his profits.

Combining the buyer and seller approach conditions, (8) and (9), we see that supporting prices

exist if and only if

vτ(1− δt−τ )
(1− δ)

+ δt−τ max
∙

vτ

(1− δ)
, ut

¸
− δt−τut ≤ p(τ , τ) ≤ δt−τ (1− δτ )πt (10)

for τ = 1, ...t− 1.

Recalling πt + ut = Ψt, conditions (10) become

(δt−τ − δt)(Ψt − ut) ≥ vτ(1− δt−τ )
(1− δ)

+ δt−τ max
∙

vτ

(1− δ)
, ut

¸
− δt−τut (11)

for τ = 1, ...t− 1. We now provide a sufficient condition on δt such that if δt is above a threshold,

the approach conditions (11) are satisfied. We define a(d) ≡ − ln
h
−d ln(d)

1−d
i
, and note that there

exists a unique root d∗ ∈ (0, 1) for d = a(d). Also, define

uA = δtΨt − v

ln δ

µ
1

1− δ
+ a(δt)

¶
and uA = Ψt +

v

δt ln δ

µ
1− δt

1− δ

¶
.

Lemma 14 If δt > d∗, then there exist uA and uA such that the approach conditions (11) are

satisfied for any ut ∈
¡
uA, uA

¢
in a (t, 0) equilibrium.

Numerically, the equation root d∗ is about .439. Thus, for t = 2, δ must be at least
√
.439 . =

0.663 One could interpret the world as having two periods, period 1 and a period 2, where the

discount factor for period 2 is δt. Hence, the longer delay in equilibrium, the higher must be δ so

that the seller will not find a profitable deviation. Specifically, δ must exceed d(t) ≡ t
√
d∗ which is

clearly increasing in t.

Lemma 14 provides a lower and upper bound on buyers’ payoffs. The bounds on utility uA and

uA depend on δ and t and they are derived in the Appendix. At d∗, uA = uA, and for all t and

δ pairs where δt > d∗, we have uA < uA. This can be seen graphically for t = 2 in the following

figure.

As with efficient equilibria, we must ensure that players cannot do better by deviating in state

(t, 0) as well as state (τ , 0), for any τ greater than t. To show that a deviation cannot be profitable,

we must specify the continuation payoffs from state (τ , 0) and other "off-equilibrium path" states.

As before we construct continuation payoffs so that in all states (τ , 0), the seller offers τ units at a

price pτ and this is accepted by all buyers. Thus, the continuation state is (τ +1, τ), which returns
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Buyer Approach Conditions

•

d* 1

u

u

uu,

Figure 3:

the quality gap to 1; due to stationarity, this is equivalent to being back on the equilibrium path

at (1, 0).

The payoffs with a cash-in support at (τ , 0) satisfy πτ = pτ + δπ1 and the buyers’ payoffs are

uτ −pτ + δu(τ +1, τ) = vτ
1−δ −pτ + δu1. Note, that from (τ , 0) the surplus on the continuation path

is Ψτ =
vτ
1−δ + δΨ1 = πτ + uτ .

By analogy to the efficient (1, 0) equilibrium, the support conditions for inefficient t − cycle

equilibrium can be derived via a cash-in support when the state is (τ , 0) where τ > t. In particular

buyer cut-off rules satisfy (2) and seller profit satisfy (3). We will use a particularly simple support

for the off the equilibrium states. The purpose of this section is to demonstrate inefficient equilibria

and not to characterize the entire set. Thus, we assume a constant support utility u for all states

beyond (t, 0); e.g. (t+ 1, 0), (t+ 2, 0)...

Combining the buyer and seller conditions and incorporating the realized surplus, which differs

from the maximal surplus in the efficient equilibrium, we obtain

Ψτ − δΨτ+1−σ ≥ u(1− δ) + g(σ, u) (12)

which must hold for all τ > t and all σ between 0 and τ − 1.

Similar to Lemma ?? we can show equilibrium conditions (12) can be reduced to only two

necessary and sufficient conditions.
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Lemma 15 An inefficient t − cycle equilibrium is supported by a cash-in outcome if and only if

(12) holds for (σ, τ) at (0, t+ 1) and (t+ 1, t+ 1);

Ψt+1 − δΨt+2 ≥ u(1− δ) + g(0, u) (13)

Ψt+1 − δΨ1 ≥ u(1− δ) + g(t+ 1, u) (14)

The proof is analogous the proof of Lemma ??. The conditions can be simplified to

vt

1− δt
+ v − δv

1− δ
≥ (1− δ)u (15)

u ≥ 1− δ

δt
u (16)

Inequality (15), follows from (13), since g(0, u) = 0. It demonstrates that the seller in period t+ 1

prefers to cash-in and sell t+ 1 units immediately rather than delay and sell t+ 2 in the following

period. This is despite the fact that the surplus in t + 2,Ψt+2, is larger than the surplus in t+ 1,

Ψt+1. The condition depends on two components. First, Ψt+1 exceeds δΨt+2, reflecting the loss in

revenue for the seller from delaying sales. Second, this revenue loss exceeds the benefit of lowering

the buyers’ utilities by (1 − δ)u. Thus, the key to understanding the condition is that the loss in

surplus must be large from not selling immediately relative to the savings of buyer payoff. As t

gets large, the seller is more tempted to sell immediately since there is a greater surplus loss by

not selling the units. Alternatively, for a given u, the seller must have a sufficiently large number

of units to sell to deter a delay deviation (when more units will be available for sale).

By direct comparison, the upper bound on u is below v(t+1)
1−δ , since

tδt−1 <
1− δt

1− δ

The left side is proportional to the surplus of receiving t units in t periods from the present, while

the right hand side is proportional to the (interim) flow surplus of one unit over t periods, beginning

today. NOTE: WHY IS THIS THE NECESSARY CONDITION. If u were to exceed v(t+1)
1−δ , then

the seller necessarily prefers to delay and let the surplus grow.

Condition (14) simplifies to (16), since u < v(t+1)
1−δ implies that g(t + 1, u) = v(t+1)

1−δ − δu. This

means that a deviating buyer who makes a purchase of t+1 units will not exercise the implicit option

of buying subsequent seller offers. In other words, u is too small for such a buyer to remain active

in the market. We now interpret the condition. A deviating buyer receives a surplus v(t+1)
1−δ − p,

30



if the seller offers a price greater than pt+1. Since this surplus must be smaller than the value of

waiting, δu, and this must hold for any price above pt+1, it must hold at the equilibrium price.

The equilibrium price is related to the equilibrium buyer surplus via u =
³
v(t+1)
1−δ − pt+1

´
+ δu1.

Thus, upon noting that u1 = δt−1u, we see that an individual buyer’s deviation payoff is simply

u−δtu, reflecting the loss of all future surplus arising from further purchases. This is a coordination
issue that is important in generating equilibria that is not applicable in the standard durable goods

model where once a buyer makes a purchase he leaves the market.

Thus, we have found conditions for the approach states prior to state (t, 0) and for the support

for states (t+1, 0) and beyond. It remains to find the equilibrium conditions for state (t, 0): First,

the seller can delay making a sale in state (t, 0) and so we must have πt ≥ δπt+1. Since Ψτ = πτ+uτ ,

this profit condition is

Ψt − δΨt+1 ≥ ut − δu (17)

which simplifies to
vt

1− δt
− δv

1− δ
+ δu ≥ u (18)

Condition (??) says that the seller prefers to sell t units in period t, to delaying sales. It is analogous

to condition (15), except for the fact that the buyers’s surpluses changes from u in (t, 0) to u in

state (t+1, 0) and that the seller has t rather than t+1 units to offer to buyers. Thus, rather than

generating a strict upper bound, the condition puts an upper bound on the current payoff of u in

terms of the future payoff of u. A higher future payoff thus allows a higher current payoff, since

the seller is more willing to avoid delay.

Second, just as the seller must not be able to raise the price in (t+1, 0), the seller must not be

able to raise the price from pt at state (t, 0). As before each buyer must find it optimal to reject

any offer above pt. This requires

g(t, u) ≤ pt ≤ vt

1− δ
+ δut (19)

which is analogous to condition (2). Using the fact that ut = Ψτ − pt
1−δt , (19) becomes

g(t, u) ≤ −(1− δt)ut +
vt

1− δ
(20)

since the right hand side of inequality (19) is always satisfied, due to ut > 0. Condition (20) shows

that buyers will accept any price pt or below if all the other buyers accept, but will reject any

price greater if all other buyers reject. Again, this an issue of buyer coordination, where buyers’

purchasing decisions depends on what they expect others buyers to do.
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To summarize, we have derived a system of four inequalities that must be satisfied for the

outcome to be a cash-in at (t, 0) and any state (τ , 0) (remind about translation states) for all τ > t.

They are conditions (15), (16), (??), and (20). A straightforward analysis of these inequalities

yields the following result:

Lemma 16 Suppose that δ > d(t). Then the set of buyer payoffs, ut, that can be supported by a

cash-in outcome at states (τ , 0), for τ ≥ t is given by 0 ≤ ut ≤ Ψt − δ2S1.

Figure 4 depicts the payoffs that can be supported in Lemma 16. Examining the figure demon-

strates many points. First, a given u can be used to support a range of ut values. For lower values

of ut, u must be relatively low, while higher values of ut require a higher value of u. As u goes to

0, ut must necessarily go to 0; this is Lemma 13. The maximum buyers’ utility is determined by

only two of the constraints in Figure 4. One of these constraints is (15), which provides a strict

upper bound on u. When it binds, this constraint says that the seller is indifferent between selling

t+1 units at price pt+1 and delaying till next period and selling t+2 units at price pt+2. Given the

maximum level to which u can be pushed, constraint (18) allows for the equilibrium utility ut to

be as large as possible. This constraint states that the seller is indifferent between the equilibrium

of selling t at pt and selling t+ 1 units at price pt+1, when buyers receive u in states greater than

(t, 0). Thus, when the seller is pushed to indifference between sale and delay, the buyers’ payoff is

as large as possible. For a given u, for ut to be rising the buyers must be coordinating on a lower

price, pt, such that any price above pt will be rejected. In the interior of the graph, below (18), the

seller strictly prefers selling in (t, 0) to delay.

Figure 4.

The final step to determining the set of equilibrium payoffs is to combine the approach and

support conditions. This involves comparing uA, uA and Ψt − δ2S1.

Proposition 17 For any t ≥ 2, if δ > d(t), then there exists a t−cycle equilibrium. The equilibrium
range of buyer payoffs is given by: (i) If δ ∈ (d(t), d (t)), then uA ≤ ut ≤ uA. (ii) If δ ∈ (d (t), 1),
then uA ≤ ut ≤ Ψt − δ2S1.

We show in the Appendix that Ψt−δ2S1 always exceeds uA as long as δ is greater than d(t). At
relatively low δ, the approach conditions are more difficult to satisfy than the continuation support

conditions. The intuition for this is that at a low δ, for any given buyer payoff the seller is not
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willing to delay a sale until relative temptation is to cash-in quickly rather than defer payoffs into

the future. While for a higher δ this is not the case.

Proposition 18 For any δ, the maximum buyer share of the equilibrium surplus is bounded below

by uA

Ψt
≥ 1 + (1−d∗)2

d∗ ln d∗
∼= .13

Importantly, this bound is independent of δ. Seller does not have extraction power even when

δ goes to 1.

7 Conclusions

To be done.

8 Appendix A- Preliminary Results.

P roof. of Lemma 1. Depending on the history, buyers may also hold a subset, possibly null, of

units {Q+ 2, ..., t− 1}. Without unit Q+1, a buyer who rejects the upgrade offer will receive a flow
payoff of vQ and have the same quality holdings in period t+ 1. A buyer who accepts will receive

a flow payoff of vt in period t and hold {1, ..., t} next period. We need to show that accepting

yields a strictly higher payoff than rejecting, for any strategy choices of other buyers and the seller

following the upgrade offer.

Obviously, accepting yields a higher flow payoff in period t since vt−p > vQ. Thus, it remains to

show that accepting cannot lead to a lower payoff in the continuation. This is a simple consequence

of the upgrade payoff structure. Consider an arbitrary sequence of offers from period t+1 onward.

Let us compare two buyers: B1 holds units {1, ..., t} and B2 lacks one or more of these units. In

choosing from the offer sequence, B1 is always weakly better off than B2 since both buyers choose

from the same sequence and any acceptance choices of B2 can be duplicated by B1. For the same

acceptance choices, both buyers make the same payments and the payoff comparison then reduces

to the surplus flows from units that are held. But, given the same acceptance decisions, B2 can

never acquire a larger set of quality units than B1. If B2 ever receives a quality surplus flow vq with

q > t in a period τ ≥ t+ 1 then B1 must also receive the same flow of vq in τ . This is because the

flow payoff vq implies that B2 holds units {1, ..., q}, but not unit q + 1, and the units {t+ 1, ..., q}
must have been acquired through offer acceptances after period t and, therefore, are also held by
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B1. Given their initial holdings in t + 1, B1 never has a quality flow surplus below vt while B2

remains at the lower flow level of vQ until (and if) unit Q + 1 is acquired. Thus, B1 is always

weakly better off than B2 for any offer sequence.

It is now clear that every buyer will choose to accept the upgrade offer. Given any strategy

choices of other buyers and the seller following the upgrade offer, a buyer who accepts always

has a weakly larger payoff from t + 1 onward, with respect to the continuation sequence of offers

implied by the strategies, and a strictly larger flow payoff in period t. Note that we are assuming

the continuation sequence of offers does not depend on the choice of a specific individual buyer to

accept or reject the upgrade offer (as in GSW).

P roof. of Lemma 2. By Lemma 1, at the start of the game the seller can offer unit 1 for a

price of p1 < v and every buyer will accept. Also, by Lemma 1, in period 2 when all buyers hold

unit 1 the seller can offer unit 2 for a price of p2 < v and every buyer will accept. By induction, in

any period t and for any history in which all buyers hold units {1, ..., t− 1} we can apply Lemma
1 to see that the seller can sell unit t for a price pt < v. Each price can be arbitrarily close to

v, so letting v − � = pt for all t, the seller’s payoff from the start of the game must be at least

(v − �)(1 + δ + δ2 + ...) = (v − �)/(1− δ). As this must hold for any � > 0, we are done.

For the continuation result, simply apply Lemma 1 with pt = (v − �) (t−Q) in period t and

then apply Lemma 1 as above, starting in period t+ 1.

P roof. of Lemma 3. By stationarity, it is sufficient to prove the result for states of the form

(t, 0) since any state of the form (τ ,Q) has the same quality increments and payments as (τ−Q, 0).
Consider state (t, 0) and a continuation path (τ , qτ−1) for τ ≥ t + 1. By Lemma 2, we know the

seller’s payoff in state (t, 0) is positive. This implies that qτ−1 > 0 for some τ . Otherwise, we have

qτ−1 = 0 for all τ and buyers must have a payoff of zero since they never acquire unit 1. But then

buyer payments to the seller must be zero and, hence, the seller’s payoff would be zero, which is

not possible. Thus, qτ−1 > 0 for some τ . Relabel so that τ denotes the first such period, so that

qτ−1 > 0 and qτ 0−1 = 0 for τ 0 < τ . Thus, the quality gap rises from t in state (t, 0) to τ − 1 in state
(τ − 1, 0) and then goes to a gap of τ − qτ−1, which is less than or equal to the previous gap of

τ − 1, in state (τ , qτ−1). By stationarity, the continuation path from (τ , qτ−1) has the same quality

increments as state (τ − qτ−1, 0). Thus, the quality gap will thereafter cycle repeatedly from size

τ − qτ−1 up to τ − 1 and the continuation path from (t, 0) has a bounded quality gap.

P roof. of Proposition 4. Starting from state (1, 0), we know from Lemma 3 that the quality
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gap is bounded and, therefore, that there is a first date, say t, at which a sale involving unit 1 takes

place. If t = 1, we are done as stationarity implies we have a 1-cycle equilibrium. So, consider

t > 1. By construction, the maximal quality held by buyers before period t is zero, so the state is

(t, 0), and qt > 0 results from sales in period t. A potential complication with state (t, 0) that does

not occur with (1, 0) is that (t, 0) corresponds to histories in which buyers acquired no quality units

as well as histories in which they acquired some subset of {2, ..., t− 1}. By definition, however,
stationarity requires that the seller offer (s) in (t, 0) and buyer acceptance choice(s) are the same

across these histories since strategies only depend on the state (t, 0).

Suppose that the sale at date t does not result in qt = t or, in other words, buyers do acquire

the full feasible set of units {1, 2, ..., t}. This implies that, for some τ where 1 ≤ τ < t, buyers

acquire units {1, ..., τ} and they do not acquire unit τ + 1. Also, let p denote the total payment
made by a buyer to the seller for all bundles purchased in state (t, 0). Finally, note that whether

or not any of the units in {τ + 2, ..., t} are held by buyers before period t or acquired in t, the state
in period t+ 1 will be (t+ 1, τ).

By construction, the equilibrium buyer continuation payoff from state (t, 0) is given by

u (t, 0) = vτ − p+ δu (t+ 1, τ)

as the quality flow utility is vτ and the payment is p in (t, 0), and next period’s state is (t+ 1, τ).

We will show that a profitable deviation, namely, offering a bundle of τ units (units 1, ..., τ) for

some price p̂, exists for the seller in period t− 1. Note that this is feasible for the seller in period
t− 1 since τ < t.

Before proceeding with the main argument, we need to develop two properties of buyer payoffs.

Stationarity implies that the equilibrium path will follow a cycle, since state (t+ 1, τ) has the same

quality gap as state (t+ 1− τ , 0). Thus, the maximal buyer quality remains at τ until period t+τ ,

when the state reaches (t+ τ , τ), at which time the maximal buyer quality rises to 2τ and the cycle

begins again. Stationarity also implies that a buyer only needs to make purchases in the states

where maximal quality rises in order to achieve the equilibrium buyer payoff. As noted above,

the history of play only matters to the extent that it impacts maximal buyer quality. Thus, the

bundle(s) offered by the seller in any state of the form (t+ kτ, kτ), where k = 1, 2..., must, at

a minimum, always include the next τ units of quality. In particular, this is true for the history

where buyers hold exactly the first kτ quality units (and no other units), since the maximal quality

for this history is kτ . Thus, an individual buyer never needs to hold more than these units in

order to be able to reach the next equilibrium path level of maximal quality via purchases in state
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(t+ kτ , kτ). Furthermore, such a buyer can always choose from the same offered bundle(s) and

price as any other buyer. It follows directly that the continuation payoff of a buyer only depends

on holding the current maximal quality and it is independent of whether the buyer holds higher

but non-contiguous units. This is the first property of buyer payoffs that we will need.

The second property is that, in equilibrium, the seller only receives revenues in states of the

form (t+ kτ, kτ), where k = 1, 2... This follows by stationarity. In (t+ kτ, kτ), in equilibrium, the

seller offer must include units {kτ + 1, ..., kτ + τ} and all buyers must acquire these units. Thus,
no buyer will ever pay a positive price for any bundle in states (1, 0) through (τ , 0), since only units

in {2, ..., τ} can be offered by the seller in equilibrium and these units will necessarily be acquired

in state (t, 0) when buyers also acquire unit 1. The same logic then applies for the next τ units,

and so on.

We now proceed with the main deviation argument. To keep things simple, let us first consider

the case where the history for state (t, 0) has buyers holding no quality units. For the seller deviation

in period t− 1, choose the price p̂ for the bundle of units {1, ..., τ} so that

û ≡ vτ − p̂+ δvτ + δ2u (t+ 1, τ) = δu (t, 0) + �,

for a small � > 0. Combining this with the earlier expression for u (t, 0), we find that p̂ = vτ+δp−�.
We claim that in any equilibrium continuation after this offer, all buyers will accept. By symmetry

of strategies, in response to this offer in state (t− 1, 0), all buyers must either accept or reject.
Suppose the buyer strategy calls for a rejection and consider the decision of an individual buyer.

Because no other buyer accepts, the continuation state will be (t, 0). By accepting, the payoff for

an individual buyer is δu(t, 0) + ε. To see this, note first that the individual buyer receives a flow

of vτ − p̂ = −δp+ � in period t − 1. Now, consider period t. By making no purchase in period t,

the buyer receives a flow of vτ . Finally, consider the continuation state (t+ 1, τ) following period

t.

A complication is that, in addition to the first τ units, the outcome in state (t, 0) may involve

buyers acquiring units in {τ + 2, ..., t}. By making no purchases in period t, the deviating buyer

will lack these units in the future while other buyers possess them. But, as we showed above, this

is of no consequence in a stationary equilibrium: a buyer holding exactly τ units obtains the same

continuation payoff of u (t+ 1, τ).

Now adding the terms in periods t− 1, t, and t+ 1 for a deviating buyer, we arrive at û as in

the above equation. Thus, accepting the seller’s deviation offer in period t− 1 for τ units results in
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a higher payoff than rejecting and waiting whenever ε > 0. Thus, all buyers rejecting the offer is

never an equilibrium continuation. In a symmetric equilibrium, it must be that all buyers accept

the offer in t− 1.

Now, to see that the deviation is profitable for the seller, note that the payoff to the deviation

offer in period t− 1 (where all buyers accept) is

π̂ = p̂+ δπ(t, τ) = vτ + δp− ε+ δ2π(t+ 1, τ) = vτ − ε+ δπ(t, 0) > δπ(t, 0),

where we have used the definition of p̂ and the equilibrium hypothesis for (t, 0), which implies

π(t− 1, 0) = δπ(t, 0) and π(t, 0) = p+ δπ(t+ 1, τ). Thus, we cannot have τ < t in equilibrium.

Finally, we must verify that the same deviation will work for the seller when the history for

state (t, 0) has buyers holding quality units (but not unit 1). By stationarity, seller’s payoffs π(t, τ)

and π(t+1, τ) are independent of these holdings. The only remaining possible complication is that

the deviation offer in t− 1 sacrifices revenues that would otherwise have been received by the seller
from an offer of units in {2, ..., t− 1}. Stationarity, however, rules out any such revenues for the
seller as we showed above.

9 Appendix B - Efficient Equilibria.

P roof. of Lemma 6: We begin by establishing two claims. These are sufficient to prove the lemma

for T = 1. We then establish a third claim and prove the lemma for T ≥ 2.

First, we show that if (4) holds at (0, τ), then it holds at (0, τ + 1). By (4) at (0, τ) we have

vτ ≥ uτ − δuτ+1 + g(0, uτ+1) = (1− δ)u

and this directly implies that (4) holds at (0, τ + 1), since

v(τ + 1) ≥ uτ+1 − δuτ+2 + g(0, uτ+2) = (1− δ)u.

The second claim is that if (4) holds at (0, τ), then it holds at (σ, τ) for σ = 1, ..., τ + 1− T . Since

σ ≤ τ + 1− T if and only if T ≤ τ + 1− σ, the quality gap in the continuation state, (τ + 1, σ), is

at least T and therefore uτ+1−σ = ū. The support condition at (σ, τ) is then

Sτ − δSτ+1−σ ≥ uτ − δuτ+1−σ + g(σ, uτ+1) ⇔
vτ +

δvσ

1− δ
≥ u(1− δ) + g(σ, u).
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At σ = 0, we have g(0, u) = 0. Thus, the (0, τ) condition is vτ ≥ u(1 − δ). Now consider

σ = 1, ..., τ + 1− T. We have two cases. First, if u ≤ vσ
1−δ , then support at σ becomes

vτ +
δvσ

1− δ
≥ u(1− δ) +

vσ

1− δ
− δu⇔

v(τ − σ) ≥ (1− 2δ)u,

which always holds for τ ≥ σ and δ ≥ 1/2. Second, if u > vσ
1−δ , then max{ vσ

1−δ , u} = u and support

at σ becomes

vτ +
δvσ

1− δ
≥ u(1− δ) + vσ ⇔

vτ + vσ

µ
δ

1− δ
− 1
¶
≥ u(1− δ).

Since vτ ≥ u(1− δ), by support at σ = 0, and δ
1−δ ≥ 1 for δ ≥ 1/2, we have established the second

claim.

We can now prove Lemma 6 for T = 1. By hypothesis, (4) holds for σ = 0 and 1 at T = 1.

Consider τ > 1. By the first claim, (4) holds for σ = 0 at τ . By the second claim, (4) then holds

for σ = 1, .., τ + 1− T . Since τ + 1− T = τ in this case, we are done.

From now on take T ≥ 2. The third claim is that if (4) holds at τ for σ = (τ + 2 − T ) to

σ = τ , then it holds at τ + 1 for σ = (τ + 2 − T ) + 1 to σ = τ + 1. Note that the quality gap

in the continuation state (τ + 1, σ) is less than T exactly when σ ≥ τ + 1 − T . Hence, we have

uτ+1−σ ∈ {u1, ...uT−1}, and we are on the rising utility part of the T− stage support. Also, note
that uτ+1 = ū.

Condition (4) holds at (σ, τ) if and only if

Sτ − δSτ+1−σ ≥ uτ − δuτ+1−σ + g(σ, uτ+1)⇔
vτ +

δvσ

1− δ
≥ u− δuτ+1−σ + g(σ, u),

and at (σ + 1, τ + 1) if and only if

v(τ + 1) +
δv(σ + 1)

1− δ
≥ u− δuτ+1−σ + g(σ + 1, u).

For the (σ, τ) condition to imply the (σ + 1, τ + 1) condition, it is sufficient to show that

v

1− δ
≥ g(σ + 1, u)− g(σ, u) (21)

There are three cases that we need to check.
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1) If u ≤ vσ
1−δ , then g(σ+1, u) = v(σ+1)

1−δ − δu and g(σ, u) = vσ
1−δ − δu, hence the condition holds

with equality.

2) If vσ
1−δ < u ≤ v(σ+1)

1−δ , then g(σ + 1, u)− g(σ, u) = v(σ+1)
1−δ − δu− vσ, which is less than v

1−δ if

and only if vσ
1−δ < u.

3) If v(σ+1)
1−δ < u, then g(σ + 1, u)− g(σ, u) = v(σ + 1)− vσ < v

1−δ .

Thus, we have established the third claim.

To complete the proof, consider τ = T + 1 and suppose (4) holds at T for σ = 0, ..., T . We

know from the third claim that since, (4) holds at T for σ = 2, ...T , it must hold at T + 1 for

σ = 3, ...T + 1. From the first claim, the support holds at (0, T + 1), since it holds at (0, T ).

From the second claim, we know the support at (0, T +1) is sufficient for support at (σ, T +1) for

σ = 1, ..., τ +1− T . But, τ +1− T = 2 in this case and thus (4) holds for all (σ, T +1). The same

logic applies between any τ and τ + 1.

Before proving Lemma 7, we need to develop three other results. First, we note a simple formula

for the cut-off utility uτ in terms of u1:

uτ =
1

δτ−1

∙
u1 − v

1− δ

µ
1− δτ−1

1− δ
− (τ − 1)δτ−1

¶¸
.

This follows directly from (6). It is clearly valid at τ = 1. To verify for τ + 1, assume it holds at τ

and we then have

uτ+1 =
1

δ
[uτ − vτ ] =

1

δτ

∙
u1 − v

1− δ

µ
1− δτ−1

1− δ
− (τ − 1)δτ−1

¶¸
− vτ

δ

=
1

δτ

∙
u1 − v

1− δ

µ
1− δτ−1

1− δ
− (τ − 1)δτ−1 + τδτ−1(1− δ)

¶¸
=

1

δτ

∙
u1 − v

1− δ

µ
1− δτ

1− δ
− τδτ

¶¸
and the formula is valid for τ +1. Next, we define a sequence of reference cut-off utilities. For any

given T ≥ 2, let u1 ≡
¡
1− δT−1

¢
S1 and let the other utilities, (u2, ...uT ), follow (6). We then have

Lemma 19 The sequence (u1, ..., uT ) satisfies (i) uτ =
¡
1− δT−τ

¢
S1 +

v(τ−1)
1−δ , (ii) uτ ≥ vτ

1−δ if

and only if δ ≥ δT−τ and (iii) uT−1 ≡ v(T−1)
1−δ and uT−2 ≡ v(T−1)

1−δ − v.

P roof. We have u1 ≡ v
1−δ

h
1−δT−1
1−δ

i
and uτ = vτ + δuτ+1 for τ = 1, ...T . We first show (i).

This holds for u1 by construction. Assume that it holds for uτ and consider uτ+1. Then

uτ+1 =
1

δ
[uτ − vτ ] =

1

δ

∙
v

1− δ

µ
1− δT−τ

1− δ
+ (τ − 1)

¶
− vτ

¸
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=
v

δ(1− δ)2
£
δ + δτ − δT−τ − δ2τ

¤
=

v

1− δ

"
1− δT−(τ+1)

1− δ
+ τ

#
.

Next, we show (ii): uτ ≥ vτ
1−δ if and only if δ ≥ δT−τ . Using (i) for uτ , we have

v

1− δ

∙
1− δT−τ

1− δ
+ (τ − 1)

¸
≥ vτ

1− δ
⇔

1− δT−τ

1− δ
+ (τ − 1) ≥ τ ⇔ δ ≥ δT−τ .

For (iii), apply the previous formula for uτ in terms of u1 at τ = T − 1 and simplify, and then use
(6) to find uT−2 in terms of uT−1 and simplify.

Next, the δ cutoff sequence, the roots of δτ = 1− δ, has several properties properties.

Lemma 20 The cut-off sequence δτ satisfies (i) δ1 = 1/2, (ii) δτ < δτ+1, (iii) limτ→∞ δτ = 1, (iv)

If δ ∈ (δτ−1, δτ ), then δ + δτ−1 < 1 < δ + δτ .

P roof. Routine algebra.

We can now prove Lemma 7.

P roof. of Lemma 7. By Lemma 6, it is sufficient to show (4) holds for τ ≤ T . Consider σ = 0

and τ = 1, ..., T . Since g(0, uτ ) = 0, we see that (4) reduces to vτ ≥ uτ − δuτ+1 for τ < T . This

holds with equality by construction of a T -stage support. At τ = T , (4) reduces to vT ≥ uT (1− δ)

and this holds by (i) of the lemma.

Now consider 1 ≤ σ ≤ τ with τ < T . We claim (4) at (σ, τ) implies (4) at (σ, τ + 1). The

condition for (σ, τ) is

Sτ − δSτ+1−σ ≥ uτ − δuτ+1−σ + g(σ, uτ+1)⇔
v(τ − σ) +

δvσ

1− δ
≥ uτ − δuτ+1−σ,

since, by (i) and (ii), uτ+1 > vσ
1−δ for any σ ≤ τ < T . At (σ, τ + 1), we need

Sτ+1 − δSτ+2−σ ≥ uτ+1 − δuτ+2−σ + g(σ, uτ+2)⇔
v(τ − σ + 1) +

δvσ

1− δ
≥ uτ+1 − δuτ+2−σ,

since uτ+2 > vσ
1−δ for any σ ≤ τ < T . Using (6) for uτ+1 and δuτ+2−σ, the (σ, τ + 1) condition

becomes

v(τ − σ + 1) +
δvσ

1− δ
≥ 1

δ
(uτ − vτ)− uτ+1−σ + v(τ + 1− σ)⇔

vτ +
δ2vσ

1− δ
≥ uτ − δuτ+1−σ,
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Thus, we need only show that vτ + δ2vσ
1−δ ≥ v(τ − σ) + δvσ

1−δ . This clearly holds for any δ ∈ [0, 1] and
any non-negative σ.

Consequently, (4) at (1, 1) implies (4) at (1, τ) for τ = 2, ..., T , (4) at (2, 2) implies (4) at (2, τ)

for τ = 3, ..., T , and so on up through (T − 1, T − 1). Thus, (4) at (τ , τ) for τ = 1, ..., T is sufficient
and the lemma is established.

P roof. of Proposition 8. First, note that conditions (i) and (ii) of Lemma 7 are valid when¡
1− δT−1

¢
S1 ≤ u1 ≤

¡
1− δT

¢
S1. This follows by applying Lemma 19 to the reference sequences,

uτ , for T and for T + 1. Then, by Lemma 7, it is sufficient to verify condition (4) at (τ , τ) for

τ = 1, ..., T .

It is immediate that at τ = 1 this requires δS1 ≥ u1. Hence, we are done if T = 1. Now,

consider T ≥ 2 and note that the same observation implies that (4) holds at (1, 1).

Now, consider (4) at (τ , τ) for τ ≤ T − 1. Then uτ+1 >
vτ

(1−δ) and we have g(τ , uτ+1) = vτ .

Thus, the equilibrium support condition (4) becomes

δvτ

1− δ
+ δu1 ≥ uτ .

We claim that condition (τ , τ) implies condition (τ + 1, τ + 1) for τ ≤ T − 2. In other words, we
claim that δvτ

1−δ + δu1 ≥ uτ implies
δv(τ+1)
1−δ + δu1 ≥ uτ+1. Recall that uτ+1 = 1

δ (uτ − vτ). So,

condition (τ + 1, τ + 1) can be written as

δ2v(τ + 1)

1− δ
+ δ2u1 + vτ ≥ uτ .

Thus, it is sufficient to show that δ2v(τ+1)
1−δ + δ2u1 + vτ > δvτ

1−δ + δu1. But, this holds if and only if

δS1 +
vτ
δ > u1, which is always the case for τ ≥ 1. Thus, (4) holds at (1, 1) and this implies (4)

holds at (τ , τ) for τ = 2, ..., T − 1.

We are then left with the (T, T ) condition, which reduces to

δu1 ≥ (1− δ)uT ,

since g(T, uT+1) = vT
1−δ − δuT by Lemma 19. We know that the condition holds at (T − 1, T − 1)

and we have

δv(T − 1)
1− δ

+ δu1 ≥ uT−1 = v(T − 1) + δuT ⇔
1

δ

∙
δv(T − 1)
1− δ

− (T − 1)v + δu1

¸
≥ uT .
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Thus, it is sufficient for (T, T ) to show that

δ

1− δ
u1 ≥ 1

δ

∙
δv(T − 1)
1− δ

− (T − 1)v + δu1

¸
. (22)

Simplifying and noting that δ ≥ 1/2, condition (22) holds if and only if δu1 ≥ v(T − 1).

From u1 ≥ (1− δT−1)S1, it is sufficient to show that δ(1− δT−1)S1 ≥ v (T − 1). We have T ≥ 2
and at T = 2 this reduces to δ ≥ 1/2. . Now, we carry out an induction: assume it holds for T if
δ+δT−1 > 1 and show that it holds for T +1 if δ+δT > 1. So, we must show that δ(1−δT )S1 ≥ vT

or, equivalently, that

δ(1 + ...+ δT−1) > T (1− δ).

The condition at T is δ(1− δT−1)S1 ≥ v (T − 1), which holds if and only if

(1− δ) + δ(1 + ...+ δT−2) > T (1− δ).

But,

δ(1 + ...+ δT−1) > (1− δ) + δ(1 + ...+ δT−2)⇔ δ + δT > 1,

which establishes the induction. Thus, the (T, T ) condition holds, and we have therefore shown

that the T−stage support satisfies (4) for all (σ, τ), where 0 ≤ σ ≤ τ and τ ≥ 1.

To see that every buyer payoff, u1 ∈ [0, δS1] can be supported in this way, simply note that
each δ ∈ [1/2, 1] lies in exactly one of the δτ cutoff sequence intervals. With δ ∈ [δτ , δτ+1), we then
see that every u1 ∈ [0, δS1] lies in exactly one of the

£¡
1− δT−1

¢
S1,
¡
1− δT

¢
S1
¤
intervals, where

T ranges from 1 up to the index on the δτ root.

P roof. of Proposition 10. By construction of an efficient equilibrium, for u1 ∈ [0, δS1] we have
a payoff of π1 =

p1
1−δ for the seller and u1 =

1
1−δ

h
v
1−δ − p1

i
for the buyers. It is sufficient for an

equilibrium to show that the support condition

St − δSt+1−σ ≥ ut − δut+1−σ + g(σ, ut+1)

holds for σ = 0, 1, ..., t at each t ≥ 1. To verify that the support condition holds, we note three
useful facts: (i) ū ∈

h
0, v
1−δ
i
, as follows from the range for u1, (ii) g(0, ū) = 0 and g(σ, ū) = vσ

1−δ−δū
for σ ≥ 1, also by the range for u1 (iii) St − δSt+1−σ = vt+ δvσ

1−δ , by definition of surplus.

Begin with σ = 0. For t = 1, the support condition reduces to v ≥ δu1. But δ < 1/2 implies

v > δ2S1, so we are done as u1 ≤ δS1. For t > 1, the support condition reduces to vt ≥ (1− δ)ū. It

is sufficient to show this holds at t = 2, which reduces to 2v
1−δ ≥ ū, and we are done by the upper

bound on ū.
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Now consider σ = 1, ..., t − 1 and t > 1. The condition reduces to v (t− σ) ≥ (1 − 2δ)ū. As
ū ≤ v

1−δ , we need only show that at t = 2 we have 1 ≥ 1−2δ
1−δ . This reduces to δ > 0.

Finally, the case of σ = t corresponds to the equilibrium path and continuation outcomes. The

condition reduces, by construction, to

πt = St − ut ≥ δ (S1 − u1) + g(t, ū) = δπ1 +
vt

1− δ
− δū.

Since π1 =
p1
1−δ , πt = pt+ δπ1, ū = vt

1−δ − pt+ δu1 by construction of the candidate equilibrium,

this reduces to δu1 ≥ (1− δ)ū and this holds with equality.

10 Appendix C - Inefficient Equilibria.

P roof. of Proposition 11. We first show that v(t−1)
1−δ > ut is necessary in any delay equilibrium

when δ < 1/2. By equilibrium construction, a first sale in state (t, 0) of t units implies π1 = δt−1πt

and

πt + ut =
vt

(1− δ)
¡
1− δt

¢ .
By flow dominance, we have π1 ≥ v

1−δ and, hence, πt ≥ v
δt−1(1−δ) . Combining with the joint payoff

expression from above, we have

ut ≤ vt

(1− δ)
¡
1− δt

¢ − v

δt−1 (1− δ)
.

It is then sufficient to show that v(t−1)
1−δ exceeds the right-hand-side in the above expression. Sim-

plifying the resulting inequality, this holds if

1 > δt−1
£
1 + δ + tδt − δt

¤
.

At t = 2 this reduces to 1 > δ
£
1 + δ + δ2

¤
. It holds at δ = 1/2 since 1 > 7/8 and, hence, for all

smaller δ since δ
£
1 + δ + δ2

¤
is increasing in δ. It holds for all t > 2 since

δt−1
£
1 + δ + tδt − δt

¤
> δt

£
1 + δ + (t+ 1)δt+1 − δt+1

¤⇔
1 > δ2 + δt + tδt(δ2 − 1).

But δ2 + δt < 1 for δ ≤ 1/2 and the second term is negative. Therefore, we have v(t−1)
1−δ > ut.

Now suppose the seller offers t− 1 units for a price of p̂ = v(t−1)
1−δ − δut − � in state (t− 1, 0). It

cannot be that all buyers reject this offer since

v(t− 1)− p̂+ δmax

½
v(t− 1)
1− δ

, ut

¾
> δut ⇔

v(t− 1)
1− δ

− δut > p̂.
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Thus, in a symmetric equilibrium it must be that all buyers accept the offer. The payoff to the

seller is then π̂ = p̂+ δπ1. This exceeds δπt if

v(t− 1)
1− δ

+ δπ1 > δ (πt + ut) .

Substituting for the equilibrium joint surplus and using π1 ≥ v
1−δ , by flow dominance, it is sufficient

to show

v(t− 1)
1− δ

+ δ
v

1− δ
>

δvt

(1− δ)
¡
1− δt

¢ ⇔
t (1− δ) > (1− δ)

¡
1− δt

¢
+ tδt.

At t = 2 this reduces to 1 > 1 + δ + δ2 which is valid for all δ < 1/2. For the induction argument,

note that at t+ 1 we have

(t+ 1) (1− δ) > (1− δ)
¡
1− δt+1

¢
+ (t+ 1)δt+1 ⇔

t (1− δ) > δt+2 + tδt+1.

So, to show that t implies t+ 1, we need only show

(1− δ)
¡
1− δt

¢
+ tδt > δt+2 + tδt+1 ⇔¡

1− δ − δt
¢
+ δt+1 (1− δ) + tδt (1− δ) > 0.

The first term is positive for δ < 1/2 and the other two terms are clearly positive. Thus, the

deviation is profitable for the seller.

P roof. of Lemma 14. In the conditions (11), τ assumes integer values 1, ..., t − 1. We will
replace τ with a continuous variable, x, that assumes values in the interval [0, t]. This greatly

simplifies the derivation of the sufficiency condition. It is useful to define three functions:

A(x, u, δ, t) ≡ (δt−x − δt)

∙
t

(1− δ)(1− δt)
− u

¸
B(x, δ, t) ≡ vx

1− δ
(1− δt−x)

C(x, u, δ, t) ≡ vx

1− δ
− δt−xu,

where u ≡ ut. For (δ, t), take u. In terms of x, the conditions (11) become

A(x, u, δ, t) ≥ B(x, δ, t) for 0 < x ≤ (1− δ)u

v

and A(x, u, δ, t) ≥ C(x, u, δ, t) for
(1− δ)u

v
< x ≤ t.
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First, we find conditions when A(x, u, δ, t) ≥ B(x, δ, t) for all x in the interval
³
0, (1−δ)uv

i
.

For convenience, let θ be defined as (1−δ)u
v . We find a necessary and sufficient condition to hold.

Suppressing arguments A = B when x = 0. A is increasing and convex in x and equals 0 when x,

while B is strictly concave in x and equal 0 when x equals 0. Thus, if at x = 0, ∂A
∂x ≥ ∂B

∂x , then

A ≥ B must all positive x. Calculating the partial derivatives, this yields the condition

v

(1− δ)

∙
t

1− δt
− 1− δt

(− ln δ)δt
¸
≥ u. (23)

Next, suppose θ ≤ x ≤ t.We find conditions when A(x, u, δ, t) ≥ C(x, u, δ, t) for all x in the interval

[θ, t]. This condition simplifies to

δtθ ≥ x− t(δt−x − δt)

1− δt
≡ h(x, t, δ). (24)

h(x, t, δ) is strictly concave and equals 0 at x = 0 and x = t. Thus, h(x, t, δ) has a unique interior

maximum at some x∗(δ, t) which is implicitly defined by δx
∗
(1−δt) = (− ln δt)δt. Note that condition

(23) implies that δt > ∂h
∂x at x = 0.

PICTURE

In order for conditions (23) and (24) to hold,

u ≡ v

(1− δ)

∙
t

1− δt
− 1− δt

(− ln δ)δt
¸
≥ u ≥ vh(x∗, t, δ)

δt(1− δ)
≡ u. (25)

must be satisfied. If the right hand side of (25) fails, then there exist a deviation by the seller of x

greater than θ that will be profitable.

Now, we provide a condition such that u > u and thus an equilibrium support condition exists.

Comparing u and u and simplifying with the definition x∗ we find that u > u if and only if

δt > − ln
∙− ln(δt)δt
1− δt

¸
. (26)

Let y be defined as δt and set (26) as an equality. Then there exists a unique root in (0, 1), since

the left hand is linear and increases from 0 to 1 as y goes from 0 to 1, while and the right hand

side is strictly decreasing in y, and approaches 0 as y goes to 1, (L’Hospital Rule).

P roof. of Proposition 17. First, we demonstrate that for relatively small δ, uA < Ψt − δ2S1,

while for higher δ0s the converse is true. Comparing, we have uA < Ψt − δ2S if and only if

0 < 1− δt + δtf(δ), (27)

where δ2 ln δ
1−δ ≡ f(δ). One can show that f(δ) is negative, decreasing, and concave with limiting

values of 0 as δ → 0 and −1 as δ → 1. One can then apply an induction argument for t ≥ 2, to
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show that δtf(δ) has the same properties. Note that 1 − δt is positive, decreasing, and concave

in δ with limiting values of 1 as δ → 0 and 0 as δ → 1. Thus, 1 − δt + δtf(δ) is decreasing and

concave and equals 0 at a unique δ ∈ (0, 1) which we define as d(t). To verify that uA < Ψt − δ2S1

at δ = d∗, we note that

1− δt + δtf(δ) > 1− 2δt > 1− 2d∗ > 0.

The first inequality follows from f(δ) > −1, the second by δt > d∗, and the third by d∗ < 1/2.

Thus, we have established that d(t) < d(t) < 1 and that uA crosses Ψt− δ2S1 from below only once
at δ = d(t).

Next, we establish uA < Ψt − δ2S1 for all δ > d(t). Comparing, uA < Ψt − δ2S1 if and only if

0 < 1 + δtf(δ)− a(δt). (28)

From above, we characterized δtf(δ). We can demonstrate that −a(δ) is negative, increasing, and
concave with limiting value of 0 as δ → 1. Thus, the limiting value of 1 + δtf(δ)− a(δt) as δ → 1

is 0. Note that since uA = uA at δ = d(t), we then have, from above, Ψt − δ2S1 > uA =uA at

δ = d(t). By concavity of the component functions, the result is established.
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