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Abstract

Organizations benefit from a diverse composition of skills. The basic premise of this paper is

that within the organization, workers of different skills improve the problem-solving ability as the

return to adding similar workers is decreasing. We show that when firms compete for talent in the

labor market, in equilibrium organizations will differ between each other. We find that organizations

with higher Total Factor Productivity (TFP) are larger and hire from a broader range of skills. This

implies that there are more levels within the organization hierarchy and that their CEO is more

skilled. We also find that the skill distribution in high productivity firms first-order stochastically

dominates, implying that there are proportionately fewer workers at each level, i.e. they are leaner

at the top, whereas the low productivity firms have a wider base of low skilled workers. Our model

provides a benchmark for analyzing diverse organizations in a competitive labor market and how

they evolve as the economic environment changes. For example, in our model merger waves lead to

downsizing of the original firms firms and an adjustment of the skill distribution. When investment

in skills is endogenized, we show that the equilibrium skill distribution has a long right tail, even if

ex ante all agents are identical.
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1 Introduction

Organizations typically are composed of a wide variety of skilled agents. Individuals have different levels

of training and experience, and there is collaboration between experts, operators and staff. The basic

premise of this paper is that diversity of talents within an organization is beneficial for solving problems

and optimizing processes, which ultimately increases productivity. Companies like Southwest Airlines

for example explicitly encourage workers at all levels to get involved in streamlining the production

process. By using the viewpoints and experience of the baggage loader as well as the logistics manager,

they consistently manage to be among the airlines with the lowest labor cost per miles flown. We believe

the role of diversity in problem solving is important because even in the manufacturing industry, only

a small fraction of workers earn a living actually manufacturing goods. The vast majority of the labor

force is involved in design, planning, and services. The firm is considered to be a group of individuals

who collectively solve problems such as the design of consumer electronics, the development of software,

finding new pharmaceuticals, providing management consulting services,... The building block of our

economy is therefore a production technology at the firm level that is designed to incorporate within-firm

diversity.

Starting from this simple premise we build a general framework for studying the allocation of skills

within the firm, yet where firms coexist while competing in the labor market. We provide a tractable

model that is closely related to models commonly used in many applications in macro, labor, and public

economics. It incorporates the notion of diverse organizations, where internally the demand for skills

trades off higher skill levels against more diversity. As a result, in equilibrium firms will consist of a non-

degenerate distribution of skills. And since firms hire in a competitive labor market, external market

wages determine the relative cost of skills economy wide. If firms differ in their firm-specific Total Factor

Productivity (TFP), then those internal and external trade-offs typically do not line up such that the

demand for skills of different firms is the same. As a result, firms will have different distributions of

skills. Our theory thus predicts diversity between organizations as well as within organizations.

Diversity matters within the group. Recent work establishes that diversity is particularly important

in collaborative groups and formal organizations. Hong and Page (2001 and 2004) propose a general

framework for the collaboration of problem solving agents that is based on internal languages in which

they encode solutions. They show that groups of diverse problem solvers, randomly selected from the

population outperform groups of high-ability problem solvers. When there are already several experts

with similar skills, adding a differently skilled worker will contribute to the resolution by adding a

different perspective. Even if the added worker is of lower skill, eventually her individual contribution

to the problem will be superior to that of one more of already numerous higher skilled expert. Having a

seventh logistics expert streamlining the baggage loading process in for an airline may lead to a minimal

improvement if only the ground personnel know that most of the delays are caused by the wheels of

one particular type Samsonite suitcase that get stuck in the conveyor belt.
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For the purpose of embedding diverse organizations in a general equilibrium framework, our ap-

proach is much less sophisticated than Hong and Page. Ours consists of a simple problem solving

process in which there is a Poisson arrival rate of a solution within the pool of identical agents. The

more agents work on the problem, the higher the expected contribution to the value of the problem

at hand. However, because of their common perspective on the same problem, the arrival rate is

decreasing in the size of the group. Larger homogeneous groups add more value, but the marginal

contribution is decreasing. This then naturally generates a complementarity with other skill levels.

The firm level technology aggregates the contribution of the different skill categories, and given the

decreasing marginal contribution of each skill level, the lower skilled workers will eventually have a

higher marginal productivity which makes it profitable to hire them.

This firm level technology is embedded in a competitive labor market. In assigning skills within

the firm, there is not only a trade-off between the marginal productivity at different skill levels, but

also with the market wage. The key insight of this paper is that diversity within organizations leads

to diversity between organizations. Firms that hire their skilled workers in a competitive labor market

and pay common competitive wages will choose a different distribution of skills.

The main implications of this technology is that the firm size is endogenous and consists of a non-

degenerate distribution of skills. The imperfect substitutability of workers as inputs in production

implies that the size of the firm is endogenous. For reasons of comparative advantage in different jobs,

firms in equilibrium decide to hire workers with different talent. Of course, quite a lot is known about

the size distribution of firms (for recent examples, see Luttmer (2007) and Rossi-Hansberg and Wright

(2007)). The interest here is how firm size relates to the internal distribution of skills within the firm.

In particular, firms of different sizes will pay different average wages. This is due to the fact that firms

differ in their composition of talent. Firms with higher firm-specific TFP will on average more skilled

workers, and as a result, the average wage paid is higher even though workers of the same skill get paid

identical wages. We show that only if the elasticity of substitution between different skills is constant

and there are no indivisibilities or bounds on the marginal productivity of skills, will the distribution of

skills within different firms be identical. But this requires that the arrival rate of solutions to problems

is infinite when any workers embarks on a new problem.

In general, the skill distribution of larger firms stochastically dominates the distribution of smaller

firms. This is illustrated in Figure 1. Larger firms hire over a wider range of skills and as a result they

have more levels in their hierarchy. The immediate implication is that their CEO is more skilled. It

also follows that the top of the firm is “leaner”, i.e., there are proportionately fewer workers at each

level. Smaller, low-productivity firms have a larger base of low-skilled workers. Another implication of

first-order stochastic dominance in the skill distribution is that there is also stochastic dominance in

the wage distribution. Larger firms therefore hire on average more skilled workers and therefore pay on

average higher wages. This can explain a well-documented fact in the empirical labor literature, that

there is an employer-size wage premium.
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Figure 1: Stochastic Dominance of Skill Distribution in Large Firms

One important finding relative to the existing literature, including in macro-economic applications,

is that the CES firm production technology is a knife-edge result. Under CES, all firms are identical

in the sense that they have the same distribution of skills. While they differ in size – more productive,

higher TFP firms are larger – they hire the same mix of skills, and the skill distribution within any

firm is the exact mirror image of the economy skill distribution. We show that the CES property

is a necessary and sufficient condition for identical organizations, and as a result, for any non-CES

technology organizations will be diverse. We are unaware of such a result to date.

We use our model to analyze how organizations evolve in an environment that is changing. In

recent years, organizations have gone through fundamental changes, not least because the competitive

environment in which they operate is changing. We consider the effect of mergers and acquisitions.

Since these tend to occur in waves, we model those as stochastic dominance changes in the distribution

of TFP. Merger waves lead to a higher concentration of high TFP firms. Our results show that in

merger waves, more high TFP firms compete for skills. As a result, the demand for skills increases,

thus driving up wages. In equilibrium, the quantity demanded of each skill type is therefore lower. In

addition, given there are more high TFP firms, the skill level of the CEO of a firm that has not changed

it’s TFP will decrease due to increased competition.

The decrease in the employment size at all skill levels provides a market driven explanation for the

fact that mergers lead to downsizing. Because the change in firm size is mediated by equilibrium prices

in this frictionless model without unemployment, it is not hard to see that downsizing is beneficial for

workers. Wages are higher after the merger wave.

We consider extensions of our model. In particular, we consider the case as in Lucas (1978), where

a minimum scale of output is needed. This is the case where the return on hiring few workers of a given

skill is negative. We find that in equilibrium, firms with larger capital stocks will be larger and will find
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it profitable to hire proportionally more high skilled workers. This implies that the skill distribution in

large firms is skewed to the right compared to the distribution in small firms. In addition, the highest

skilled manager in the large firm will be more skilled than the CEO in a small firm. The key difference

with the general case is that now there are many highest skilled types in the firm (a board instead of

one CEO). As a result, the support of skills of the small firm is included in the support of skills of the

large firm. We also analyze the impact of investment in skills by ex ante identical agents and show

that in equilibrium, there will be an endogenous distribution of skills. Even with no or small ex ante

heterogeneity, there can be considerable ex post inequality as this technology enhances heterogeneity.

In equilibrium, if there is scarcity of any one particular input, the returns to obtaining that skill are

high. With increasing investment costs, the ensuing distribution of skills is decreasing in type as the

returns in term of wages must be increasing to compensate for higher investments costs. Wages can

only be increasing if there is sufficient scarcity in that particular input.

It is worth pointing out that we do not necessarily see the problem-solving process as a sequential

process in which higher skilled agents coordinate problems and attempt to solve problems for which

lower skilled workers failed to find a solution. Our production technology can therefore be interpreted

as a polyarchy instead of a hierarchy. Sah and Stiglitz (1986) define a polyarchy as a system where

there are several decision makers who can undertake projects (or ideas) independently of one another;

in a hierarchy only a few individuals can undertake projects while others provide support in decision

making.

There is a large body of work studying the firm as an information processing organization. A recent

revival pioneered amongst others by Garicano (2000), Antràs, Garicano and Rossi-Hansberg (2006),

Garicano and Rossi-Hansberg (2006)) analyzes the organization of knowledge in hierarchies. Differently

skilled agents specialize in the type of problems to solve, with lower skilled agents passing on those

problems they have not been able to solve. A cost of communication partitions the skill distribution in

a a finite number of hierarchical levels. Our work builds on this literature. Like those models, our model

is a version of a many-to-one matching model of workers to an individual firm. Crawford and Knoer

(1981) and Crawford and Kelso (1982) provide a general framework and conditions (notably, gross

substitutes) under which a market mechanism will lead to an equilibrium allocation and wage vector.1

We impose more structure by assuming a particular functional form, and we allow for the possibility of

a continuum of skill levels. We represent the firm level production processes that embody heterogeneity

using the tools of the standard Arrow-Debreu framework. The ultimate objective is to propose a theory

that uses a set of equilibrium tools that are common in applied work and macro economic models,

yet without assuming an aggregate production function. We provide a tractable framework for skill
1See also Kremer (1993), Kremer and Maskin (2004). These O-ring type production technologies can be interpreted

as problem-solving technologies. A small mistake by one worker in the production chain can have implications of un-

precedented dimensions. One bug in the software may lead to the malfunctioning of millions of electronic devices, or the

inadequate quality control for lead in paint can lead to a worldwide recall of a toy.
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heterogeneity within the firm based on a commonly used CES production technology with a seemingly

minor twist. The advantage is that the model can be analyzed like the standard CES model but the

economic implications both at the firm level and in the aggregate economy are substantially different

from the CES model.

2 The Model

Population. Consider a population consisting of agents endowed with talent x, a one-dimensional

skill characteristic. There are N different types of skills xi (x1, x2, ..., xN ) increasing in i and with a

measure m(xi) of each type. The total measure of agents is normalized to one. There is a measure

of entrepreneurs, each of whom is atomless, who own the property rights to a production process

A ∈ A ⊂ R+. This can be interpreted as firm-specific total factor productivity. Let µ(A) denote the

measure of each type A.

The problem-solving technology. In our model firm, of each skill x there is a contiuum of agents

with measure n(x) employed by the firm. Consider each skill group in isolation and denote by h (n)x

the expected value of problems solved after hiring a measure n of type x workers. We think of these

workers continuously attempting new problems. Any new problem is circulated amongst all n workers

of the same type, and a solution is found randomly. If a solution is not found by any type x worker,

the problem is abandoned. When more agents of skill x are employed, a new problem is attempted by

more workers. Because the workers have common skill sets, an attempt after other agents have tried

and failed to find the solution leads to a lower solution probability. We therefore represent the arrival of

a solution probability by a non-homogeneous Poisson process with arrival rate λ(n).2 This is a Poisson

process with a non-constant arrival rate, which in our case is assumed to be decreasing: λ′ < 0. The

firm is concerned with the expected number of problems solved, which is given by h(n)x where

h (n) =
∫ n

0
λ (s) ds.

Adding more agents increases the number of problems solved, i.e., h′(n) > 0, but it does so at a

decreasing rate, i.e., h′′(n) < 0 (since h′ = λ and h′′ = λ′). Observe that if the Poisson process is

homogeneous and λ is a constant, then h(n) = λn is linear. This is illustrated in Figure 2.

Across different skill types, skill sets are different, and we assume that the problem-solving capacity

of different x types is as if they consider different new problems. We assume that the total value of

problems solved is determined by a standard additive aggregator:

L(n) =

[
N∑
i=1

h(ni)xi

]β
,

2A formal definition of a non-homogeneous Poisson process is provided in the Appendix.
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Figure 2: A. The non-homogeneous Poisson arrival rate — B. The expected number of problems solved.

where n is the vector of quantities ni = n(xi) of each skill xi, and β > 0. Here we can interpret the role

of the higher type x either as a higher probability of solving the problem or as a higher return say on

a harder problem.

Observe that even with β = 1 the different skilled inputs are not perfect substitutes due to the

concavity in h.3 In particular, lower skilled types xi may generate higher marginal value than higher

types xj > xi as long as ni is sufficiently smaller than nj : h′(ni)xi > h′(nj)xj provided ni � nj . The

complementarity in this aggregator captures the notion that diverse skill types are valuable for problem

solving. Observe also that while there is a rank of skills, with higher x types being more successful

at solving problems, the problem-solving must not necessarily be interpreted as a hierarchical process.

The organizational form can equally well be understood as a polyarchy of different-but-equal problem

solving units (see Sah and Stiglitz (1986)).

Finally, solved problems translate in output. Firms produce output y using their given TFP A and

the aggregate value of problems solved L given their skill vector n. The production function is given

by

y = AL(n).

It is important to note at this stage that y is a firm-level production function and that in general it is

not equal to the aggregate production function. For most of the paper, we consider a discrete distribution

of types x. A continuous distribution of types is analogously represented by

L(n) =
[∫

h(n(x))xdFA(x)
]β

where FA(x) denotes the distribution of skills in firm A. Below we derive that this is the continuous

limit of the production technology with finite skill types.
3To see the complementarity in inputs, consider for example a Cobb-Douglas like formulation where h is logarithmic

and xi are the weights: L =
PN
i=1 ln(ni)xi.
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Atomless firms act as price takers. Given a vector of wages w(x) and normalizing the output price

to 1, firm A’s problem is given by:

πA = max
n1,...,nN

A

[
N∑
i=1

h(ni)xi

]β
−

N∑
i=1

niw (xi) ,

where ni is short for ni(A). A competitive equilibrium of the economy can be defined as follows:

Definition 1 In a competitive equilibrium in this economy: 1. Firms maximize profits πA; 2. workers

choose the job with the highest wage offered w(x) for a type x; 3. markets clear.

Before analyzing equilibrium, we derive the elasticity of substitution which will play a key role in

characterizing the equilibrium properties. The Elasticity of Substitution between inputs ni and nj ,

denoted by σ, is defined as

σ =
d ln(nj/ni)

d ln(TRS(ni, nj))

where TRS = dy/dni
dy/dnj

is the technical rate of substitution. Then

σ = − h
′ (ni)

h′′ (ni)
1
ni
.

Observe that the elasticity of substitution is independent of β because it measures the change along the

isoquant. In fact, the role of β only enters when making comparisons across different isoquants, i.e.,

whether inputs are gross complements or gross substitutes. In the Appendix we show that when β > 1

inputs are gross complements and when β < 1 they are gross substitutes.

3 The Results

We now proceed with solving the equilibrium allocation in the model. First, we state the firm’s opti-

mization problem.

3.1 Identically Distributed Organizations

Suppose we were to start out with a Constant Elasticity of Subsitution (CES – σ is constant) production

process that is commonly assumed as the aggregate technology in macro models, and we apply it to

the firm production. Recall that an often used version of the CES production function is of the form

L =
[∑N

i=1 bn
γ
i xi

]1/γ
. It turns out – as we will establish in the next Lemma – that the most general

form is

L =

[
N∑
i=1

(a+ bnγi )xi

]β
.

Observe that the CES coefficient γ and the coefficient β for gross substitutes/complements need not be

inversely related. The elasticity of subsitution is given by σ = − h′

h′′
1
n = 1

1−γ .
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Lemma 1 The following two statements hold for a, b and γ constants with a ∈ R, b > 0, γ ∈ [0, 1] :

1. The elasticity of subsitution σ is constant if and only if h(ni) is of the form a+ bnγi ;

2. L(n) is homothetic if and only if h(·) is of the form a+ bnγi .

Proof. In Appendix.

The immediate implication of the firm-level CES technology is that all firms have an identical skill

composition.4

Proposition 1 In equilibrium all firms have the same skill distribution FA(x) equal to the economy’s

skill distribution F (x) if and only if the production technology is CES with a ≥ 0.

Proof. In Appendix.

The proof documents in detail that this follows from the homotheticity property of the CES tech-

nology where the equilibrium allocation depends on the ratio of the inputs, not their value. From the

First-Order Condtions of the firm’s problem, it follows that

ni
nj

=
(
w (xj)xi
w (xi)xj

) 1
1−γ

.

After solving for the demand and imposing market clearing, the equilibrium allocation of skills j in firm

A is given by:

nj (A) =
A

1
1−γβm (xj)∑
AA

1
1−γβ µ (A)

.

As a proportion of the total labor force in firm A, n (A), the fraction of j workers is equal to the ratio

of those workers in the skill distribution in the market m,

nj (A)
n (A)

=
m (xj)
m

for every A. As a result, the distribution of skills within the firms is identical to the distribution of

skills in the market. 5

Then given identical distributions, the following result immediately follows.
4Below, in section 6 we analyze the case where a < 0.
5One qualifying comment is due here. In the Appendix (Lemma 2) we show that the production technology is always

quasi-concave, and strictly concave when β < 1
γ

. In the latter case the firm’s problem is also quasi-concave, but that is

not guaranteed when β > 1
γ

. In fact, when β is sufficiently large, the degree of gross complementarity may be so strong

that firms have some monopoly power. With extreme complementarities, ultimately all workers will be employed by the

most productive firm. In the context of an exchange economy, Ostroy and Zame (1994) derive conditions on a general

class of utility functions under which nonatomic markets are non-competitive. A market equilibrium is guaranteed to

be competitive provided there is sufficient substitutability. Throughout this paper (with and without CES technologies)

we will implicitly maintain the assumption that β is not too large, thus guaranteeing sufficient substitutability and an

equilibrium that is competitive.
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Proposition 2 Under CES with a ≥ 0:

1. There is full support of the distribution of all firms; and

2. There is no firm size-wage premium (firms of different sizes pay identical average wages)

The key insight here is that for the CES technology h(n) = a+ bnγ , at zero the derivative is infinite

h′(0) =∞. The immediate implication of this is that no matter what the equilibrium wage is, all firms

have an infinite marginal return from hiring any skill type. The prediction of the CES production

technology is therefore that even the smallest firms will compete for the highest skilled CEO in the

economy. With perfect divisibility, that will imply they hire only a tiny fraction of her time. Observe

that Lemma 1 establishes necessary and sufficient conditions, and that therefore it is also true that

identical distributions can arise only under a CES technology.

The prediction of different firms having identical skill distributions may be analytically attractive,

but it is not realistic. A small mom-and-pop corner store is unlikely to hire agents as skilled as the

CEO of large companies like General Electric, even if only a tiny fraction of their time. In terms of our

problem-solving technology, this comes down to the properties of the stochastic process that governs the

Poisson arrival rate of solutions. Imposing the CES structure on h implies that the non-homogeneous

Poisson process has an infinite arrival rate as the number of workers in a skill category becomes small.

To see this, consider for example, h (n) = bnγ , i.e. with b > 0, γ < 1, and a = 0. In order to obtain this

h function with our non-homogeneous Poisson process, the arrival rate λ (n) must be given by bγnγ−1.

But then as n goes to zero, the arrival rate λ (n)→∞: when there are few agents of a given skill, the

solution of a problem arrives infinitely fast.6 As a result, there is no longer any imperfection in the

problem-solving technology.7 In other words, when no-one else is around, the skilled worker is suddenly

endowed with an infallible ability to solve any problem immediately. It seems therefore reasonable to

focus on processes where the arrival rate is bounded, thus moving beyond the CES assumption on h.

In the next section we will find that this also implies more realistic properties of the firm distribution

across firms.

3.2 Diverse Organizations

We now proceed by analyzing the problem in which it is explicitly assumed that under no circumstance

agents have an infinite problem-solving ability and that as a result there is always a residual amount
6Considering the case in which we have a positive sunk cost (a < 0), then the arrival rate is exactly the same (the

constant doesn’t matter here). However, the presence of a puts a bound on the minimal n that would be chosen, avoiding

the n in which the arrival rate is arbitrarily large. We address the case of CES with a sunk cost in section 6
7The CES example suffers from the problem pointed out by Faingold (2005) in continuous time games with imperfect

monitoring. As the period length shrinks to zero, the number of signals observed in any given interval of real time increases

without bound, and as a result, the monitoring imperfection vanishes.
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of unresolved problems. This is equivalent to assuming that the solution to problems does not arrive

at an infinite rate. Given concavity of h, this is equivalent to assuming that the marginal product of

the first worker any skill level is bounded

h
′ = lim

n→0
h′ (n) = λ(0) <∞.

Examples that satisfy this condition include Poisson process with exponential decay λ(n) = e−n (with

corresponding h(n) = 1 − e−n) or hyperbolic decay λ(n) = 1
1+n (with corresponding h(n) = arctann)

where in both cases h′ = λ(0) = 1, but not the CES technology where h′(0)→∞.

Further, since the degree of complementarity/substitutability is fully governed by the elasticity of

substitution σ which is independent of β, we will focus on the case where β = 1. This considerably

reduces the notation and allows for closed form solutions. The implication of this assumption is that

for any changes in prices (wages), changes in allocations are completely determined by the substitution

effect. Moreover, for values of β in the neighborhood of 1, the results do not change qualitatively either

because of the generic local uniqueness of equilibrium in Arrow-Debreu economies.

The seemingly minor restriction on the technology of bounded arrival of new solutions has important

implications for the way firms will optimally hire skilled workers. In particular, it will lead to diversity

between organizations driven by the within organization diversity of skills. To see this, observe that the

key implication of the bounded arrival of new solutions is that firms with different levels of TFP will

have different marginal returns from hiring any given worker. This can be seen from inspection of the

firm’s profits where output is multiplied by A and therefore at each skill level, output is more valuable

in higher A firms given identical ni:

max
n1,...,nN

A

[
N∑
i=1

h (ni)xi

]
−

N∑
i=1

niw (xi) .

s.t. ni ≥ 0, ∀i ∈ {1, ..., N}

There are non-negativity constraints on ni that will now be binding whenever the marginal product

Ah′(ni)xi is below the wage rate w(xi). This is immediately evident from the First-Order Conditions

which imply:

(ni) : h′ (ni) ≤
w (xi)
Axi

, ∀i ∈ {1, ..., N} .

From concavity, we know that the left-hand side of the above inequality decreases in ni, and the

maximum value is achieved when ni → 0 ⇒ h′ (0) = h. The right-hand side is constant from price

taking. Therefore, if h < w(xi)
Axi

, firm A does not hire workers of skill xi.

Given continuity of the distribution of TFP, for each skill level xi there exists a critical firm A(xi)

such that only firms with A ≥ A (xi) hire workers with skill xi. Thus, the critical TFP firm satisfies
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A (xi) = w(xi)

hxi
. The demand of a firm A for skill xi therefore satsifies:

ni (A) =

 h′−1
(
w(xi)
Axi

)
, if A ≥ A (xi)

0 , otherwise

Then, from market clearing and substituting demand ni (A):∑
A>A(xi)

h′−1

(
w (xi)
Axi

)
µ (A) = m (xi) .

For the case of a continuum of skills we take m (xi) = F (xi) − F (xi −∆) and µ (A) = G (Aj) −
G (Aj −∆), dividing both sides by ∆ and taking the limit as ∆→ 0. Then the equivalent condition is:∫ A

A(xi)
h′−1

(
w (xi)
Axi

)
g (A) dA = f (xi) . (1)

We can show that firms now will not hire on the entire support of skills, but will have a cut off rule

for the highest skill a firm hires given its amount of TFP A. Call the cut-off rule xCEO.

Proposition 3 Firms with higher A have a larger labor force, and they hire more of all skill types.

Firms with higher firm-specific TFP A are larger. The productivity per worker is higher, and

therefore at common economy-wide wage rates, it is optimal for them to hire more workers. The CES

technology is a special case here and this result therefore also holds. The question remains how the

skill distributions within the different firms compare.

We will denote the highest skill type x that a firm with TFP A hires by xCEO(A). It corresponds

to the highest skill level the cutoff firm A(xi) is willing to hire, i.e., xCEO(A) = w(xi)

hA
. We can now

establish the following proposition:

Proposition 4 If f ′ (xi) < 0, the highest skilled worker xCEO(A) is increasing in A and therefore in

the size of the firm.

Proof. In Appendix.

The next result follows immediately from the proof of Proposition 4.

Corollary 1 Smaller firms hire from a smaller range of skills than larger firms: supp fA ⊂ supp fA

for all A < A.
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We further characterize the equilibrium allocation by imposing additional properties on h′′′ (and

therefore on the decay of the arrival process λ′′). We can formally establish the following results under

the sufficient condition that h′′′ is not too positive, i.e. λ is not too convex. That means that there is

no sudden drop in the arrival rate followed by a constant arrival. For the remainder of the results, we

maintain this assumption which is satisfied for a broad class of functions h, and all the ones used in

examples.

Proposition 5 There is single-crossing of the densities:
d2
“
ni(A)

n(A)

”
dAdxi

> 0

Proof. In Appendix.

Then the next result follows from single-crossing of the firm skill densities and the fact that the

support of skills hired in smaller firms is included in that of larger firms.

Proposition 6 (Stochastic Dominance). The skill distribution of larger firms stochastically dominates

that of smaller firms.

Example. To see how different TFP firms design their organizations with different skill distributions,

consider the following example with the skill distribution Pareto (on support x > 1 and with coefficient

1), the firm TFP distribution uniform on [0, 1] and where there is exponential decay in the arrival rate

of solutions: λ(n) = e−n. This implies h(n) = 1 − e−n. For three different levels of A = 0.5, 0.7, 0.9,

Figure 3.A. depicts the densities of skills in each firm.
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If the skill distribution is taken as the guidance for the organigram of a firm, this has immediate

implications for what it will look like for firms of different sizes. Larger firm will not only hire more

skilled workers for their top position of CEO, they will also have a thinner density of skilled agents at

every rank, including at the bottom. The smaller mom-and-pop store will have a broad base of low

skilled workers with a CEO who is only moderately more skilled. Figure 3.B. plots the organigram

implied by the distribution of skills.

The next Proposition then follows immediately from stochastic dominance and the fact that wages

are determined competitively, i.e. equal skills earn equal wages.

Proposition 7 (Firm Size – Wage Premium). Larger firms pay higher wages than smaller firms.

These findings on the organizational design of firms is consistent with empirical evidence. There

is ample evidence of an Employer Size – Wage Effect. Large employers pay more than small em-

ployers (early evidence goes back to Lester (1967)). Several explanations have been proposed ranging

from working conditions and compensating differentials to union avoidance and product market power.

Brown and Medoff (1989) find that these explain little of the size–wage effect, and that the largest

share is explained by differences in the labor quality. Larger firms hire more skilled labor. This is

consistent with our finding in Proposition 7. Also, the effect is sizable: around the average, a one

standard deviation increase in firm size (7 workers more) leads to a 6 − 15% increase relative to the

earnings one standard deviation below (Brown and Medoff (1989)). Of course, a substantial component

in the empirical debate is about unobservable heterogeneity. Here we consider the type x to represent

the true type, including if it is unobservable.

Skill levels and salaries of the CEOs are higher in larger firms. Since Roberts (1956), it has repeatedly

been confirmed that CEO compensation is increasing in firm size. In particular, the evidence suggests

that CEO compensation increases proportionally to a power function of the firm size in a cross-section.

Most recently, Gabaix and Landier (2008) (see also Tervio (2008)) confirm this finding and refer to it

as Roberts’ Law. They find an estimate for κ̂ ' 1/3 where w ∼ Sκ. Below in section 7 we use CEO

compensation to back out the distribution of TFP across different firms.

More productive firms pay on average higher wages. For evidence, see amongst others Krueger and

Summers (1988). This is consistent with the predictions of the model. Even though in this competitive

market with complete information, workers of the same skill get the same wages, the first order stochastic

dominance of the skill distribution of larger firms implies that the more productive firms pay higher

wages on average.

4 The Evolution of Diverse Organizations

The outlook of organizations changes over time. Firms respond to different technological and market

conditions, and the equilibrium allocation of skills within the firm and between firms changes. In this
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section, we analyze how changes in the environment affect the diversity of organizations.

First we consider changes in the concentration of productive resources of firms. In waves of mergers

and aquisitions the concentration will increase, whereas in periods of downsizing, spin-offs and out-

sourcing, the concentration of TFP will decrease. We consider a simple experiment of a change in

the distribution of A. In particular, we compare a given economy with distributions of TFP G(A) to

an otherwise identical economy with distribution G1(A) and where G1 (·) First-Order Stochastically

Dominates (FOSD) G (·) , i.e. G (·) > G1 (·) for all A.

Proposition 8 As the distribution of TFP becomes more concentrated (in the sense of FOSD) firms

become smaller: the demand at a firm with constant A for each skill type ni decreases, wages increase,

and the skill type of the CEO xCEO decreases.

Proof. In Appendix.

The impact of an increase in the concentration of TFP is an increase in the competition for labor

at all skill levels. As a result of the increased competition, wages increase everywhere, which in turn

leads to a decrease in equilibrium quantity demanded. For any firm, that also implies that the skill

level of the CEO, xCEO, decreases. In waves of increased mergers and aquisitions for example, the

model predicts that wages of all skill levels increase and that the skill level of the CEO in a given firm

A decreases.

This may provide an explanation for the fact that mergers lead to downsizing. The explanation

here is market driven: mergers tend to occur in waves, thus increasing the demand for skills, pushing

up wages and resulting in lower equilibrium quantities employed. In this frictionless model without

unemployment, downsizing is beneficial for workers since wages are higher after the merger wave. It is

precisely the wage increase that lead firms to downsize.

In addition to changes in the concentration of productive resources, an obvious change is the impact

of technological change in the problem-solving production function. Over recent decades, there have

been enormous advances in technology. Equally skilled workers now can communicate more easily and

more effectively, thus potentially increasing their problem-solving capacity. There may be different

channels through which technology affects productivity, and one plausible channel is the arrival rate of

the solution of new problems λ(n), which we model by means of a monotonic and increasing shift in λ(·).
Consider a class of functions λ (n; a) parameterized by a and assume that λ is everywhere increasing

in a. The immediate implication is that the marginal productivity of every skill group increases since

h′(n; a) = λ(n; a). Because λ is increasing in a everywhere, it therefore follows that h′(0) = h increases.

As we increase the arrival rate of solutions, we can now evaluate the impact on equilibrium. The

first implication is that wages will increase unambiguously.
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Proposition 9 As the marginal productivity increases dh′(n;a)
da > 0, all wages increase.

Proof. In Appendix.

With an increase in the problem-solving ability, all workers become more productive and in a

competitive market this leads to an unambiguous increase in wages at all levels. In contrast, the effect

on the distribution of skills within and between firms is ambiguous. Technological change increases the

demand by all firms at all skill levels, but the general equilibrium effect from higher prices mitigates and

possibly offsets this increased demand. The net effect is ambiguous, and therefore it is also not obvious

whether the skill level of the CEO will increase or decrease. Consistent with Gabaix and Landier (2008)

though, wages of the CEOs go up unambiguously.

5 Investment in Skills: Endogenous Heterogeneity

Consider an economy with ex ante identical agents and a technology where each can choose to invest

in education to obtain a level of skills xi. The cost of education is given by

C(xi) = a+ c(xi)

consisting of a fixed cost a ≥ 0 and a strictly convex variable cost c (xi) , where c (0) = 0. Without loss

of generality, we normalize the workers’ net utility to zero.8 Considering that in equilibrium all skill

are supplied, we have that:

w (xi) = a+ c (xi) , ∀xi ∈ (0, x)

Observe that w′ (xi) = c′ (xi) > 0 and w′′ (xi) = c′′ (xi) > 0. Therefore, in equilibrium the wage function

must be increasing and convex.

Considering the case in which we have h (ni) strictly increasing and concave but h′ (0) = h < ∞,

we obtained from the labor market equilibrium that:∫ A

A(xi)
h′−1

(
w (xi)
Axi

)
g (A) dA = f (xi) (?)

where:

A (xi) =
w (xi)
hxi

In the previous sections, equilibrium was determined by an exogenous distribution of skills f(xi) and an

endogenous wage schedule. Now, w (xi) is exogenously pinned down by the cost function C(xi), while

f (xi) is determined endogenously in (?).

With diversity in the production technology, ex ante identical agents have incentives to take on

different levels of investment. Because the marginal productivity at all skill levels is decreasing, in
8Alternatively it is equal to some constant
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equilibrium agents will choose invest levels that are different, yet obtaining the same net utility. More

costly Investment will necessarily lead to higher skills and thus higher wages, and for agents to be

indifferent the equilibrium measure of agents investing must eventually be decreasing in skills. For

agents to be willing to bear the higher cost wages must increase sufficiently, which is the case when

there are increasingly fewer workers who obtain higher skills. This then leads to the following result:

Proposition 10 The equilibrium distribution of skills is always uni-modal and has a long right tail.

When there is no fixed cost of investment (a = 0), the density is everywhere downward sloping.

Proof. In Appendix.

It is worth pointing out here that the properties of the distribution are derived in the context of a

competitive market, and that no externalities are needed to generate a non-degenerate distribution of

firms.9

Example. Consider an economy with exponential decay of problem solving ability h (ni) = 1− e−γni ,
and c (xi) = cx2

i and A is exponentially distributed with parameter λ. Then, we have h′ (ni) = γe−γni

and h = h′ (0) = γ. In this case, we can easily calculate x∗ =
√

3
2 . Notice that every TFP above a

given threshold will hire a given skill, but now each TFP level has a minimum and a maximum skill

thresholds.

A (xi) =
a+ cx2

i

γxi
and A′ (xi) =

cx2
i − a
γx2

i

We now consider the parameter values a = 1
2 , c = 1

3 and γ = 2. The graph of A(xi) is given in Figure

4.

In order to calculate the density of skills in this economy, we will derive the demand for each skill

per TFP. From our previous calculations, we obtain that:

nA (xi) =
1
γ

[
lnA− ln

(
a+ cx2

i

γxi

)]
.

Using the expression we obtained for A (xi) above, A = a+cx2
i

γxi
and −cx2

i + γAxi−a = 0, we can get the

minimum and the maximum skill thresholds for a given A: xCEO(A) and xJanitor(A) . From the case

in which ∆ = 0, we obtain the minimum company in activity, the one in which γ2A2 − 4ac = 0. For

our parameters A =
√

1
6 ≈ 0.40825. Then, solving the equation above, we have:

xCEO (A) =
γA+

√
∆

2c
and xJanitor (A) =

γA−
√

∆
2c

In our example x (A) =
√

3
2 = x∗, as we should expect. Graphically, the demand for 4 different type

TFP firms in this example is given in Figure 4.B.
9For a framework with spillovers from technology adoption and the ensuing endogenous heterogeneity of ex ante identical

agents, see for example Eeckhout and Jovanovic (2002).
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Figure 4: A. The equilibrium function A(xi). — B. The endogenous demand for skills: n(x).

We can now derive the distribution of skills. Recall that:

f (xi) =
∫ ∞
A(xi)

nA (xi) g (A) dA =
∫ ∞
A(xi)

[
−1
γ

ln
(
a+ cx2

i

Aγxi

)]
λe−λAdA.

Rearranging, and using the definition of A (xi) = a+cx2
i

γxi
, we obtain:

f (xi) = −1
γ

ln (A (xi)) e−λA(xi) +
1
γ

∫ ∞
A(xi)

λe−λA lnAdA

For the second term, using integration by parts, we have:∫ ∞
A(xi)

λe−λA lnAdA I.P.=
{
−e−λA lnA

∣∣∣∞
A(xi)

}
+
∫ ∞
A(xi)

e−λA

A
dA

L.H.= e−λA lnA(xi) +
∫ ∞
A(xi)

e−λA

A
dA

since from de L’Hôpital rule, the first term evaluated at ∞ is zero:

lim
A→∞

lnA
eλA

=L.H. lim
A→∞

1
A

λeλA
= lim

A→∞

1
λAeλA

= 0.

Then the density of skills is given by:

f (xi) =
1
γ

∫ ∞
A(xi)

e−λA

A
dA.

This is one form of the Exponential Integral that does not have a closed form solution but it is a well

used numerical integral. The graph of the density is given in the Left panel of Figure 5. The Right

panel of the Figure plots the density for the same example when there is no sunk cost of investment

(a = 0). In that case, the density is everywhere downwards sloping.
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Figure 5: Investment leads to endogenous distribution of skills. The distribution is unimodal when

there is a fixed cost of investment (Left) and otherwise everywhere downward sloping (Right).

6 Discussion and Extensions

6.1 Relation to Lucas’ Span of Control Model

One obvious way to relax property that h′(0) =∞ while maintaining the CES formulation is to allow

for a technology that has a fixed cost of initial investment. Suppose a is negative, and one allows for

the possibility that the firm decides not to produce with a particular skill level when output of that

skill is negative. Then a can be considered as a fixed cost that only is incurred in the case of positive

output. This obviously truncates the production function and renders the production set non-convex.

The production technology then is:

y = A

[
N∑
i=1

max{a+ bnγi , 0}x

]β
.

This formulation is remeniscent of Lucas’ (1978) span of control technology of the manager (though

not of the workers): a firm needs exactly on manager, no more no less. In our version, the firm needs

to incur a fixed cost a before hiring any skilled worker which will require a minimum scale of
(
−a
b

)1/γ
.

There is however no maximum scale. This is illustrated in Figure 6.A.

In equilibrium, firms will now differ but due to the non-convexity in the production technology, the

size distribution of skills of all firms is truncated at the top. This is illustrated below for an example

where h(n) = −0.5 + n1/2, β = 1, skills are distributed according to the Pareto with coefficient 1 and

the firm TFP distribution is uniform on [0, 1].

We derive under plausible conditions that the highest skilled worker has a higher type in larger

firms than in smaller firms. This implies that the distribution of higher k firms has fat tails at the top
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Figure 6: A. Span of Control: h(n) versus Lucas (1978). — B. Skill Densities, CES and Sunk Costs.

as long as the skill distribution has decreasing density.

Consider the production function we used above h(n) = a + bnγ , where a < 0. A firm will hire a

type x if for that type, the equilibrium n∗ yields positive output: h(n∗) = a+ b (n∗)γ , where we derived

n earlier as:

n∗ (k) =
A

1
1−γβm (x)∑
k A

1
1−γβ µ (k)

.

The firm’s decision problem is therefore to choose n∗ as long as h∗ = a + b

(
A

1
1−γβm(x)P

A A
1

1−γβ µ(k)

)γ
> 0. A

firm with capital A(xi) will therefore be indifferent between hiring and not hiring provided

A(xi) =
(
−a
b

) 1−γβ
γ

 1
m(x)

∑
A∈A(x)

A
1

1−γβ µ (A)

1−γβ

.

The only caveat is of course that the summation over A is for all A actively hiring workers of type x.

A(x) denotes the set of firms actively hiring type x workers.

Proposition 11 Let the elasticity of substitution σ be constant, and there is a fixed cost of employing

one skill type (a < 0), then: 1. higher A firms hire more workers; 2. the support of skills hired in lower

A firms is included in the support of skills of higher A firms; 3. when the skill density is decreasing,

higher A firms hire more skilled workers

The important characteristic of this technology is the non-convexity which leads to a minimum size

of each skill level. That implies that even at the top, there is a collection of individuals all with the
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same skill level. Instead of one CEO, there is a board of top skilled directors who run the firm. In the

example below, we derive the equilibrium skill distribution in different A firms. The plot of the density

for is in Figure 6.B. At the highest level, there is a sharp drop in the density due to the minimum size

employed.

Example. Let skills be distributed according to the Pareto with location 1 and coefficient 1. Then the

cdf is P (x) = x−1 and the density is p(x) = x−2(= m(x)). Let the distribution of firms be uniform,

µ = 1 for A ∈ [0, 1]. Let h(n) = a+ n1/2, and β = 1. We have:

h (n) =

{
a+ n

1
2 if n > 0

0 if n = 0

where a < 0. From previous calculations, we obtain:

nx (A) =
A2x−2∫
A(x)A

2dA
.

Define A (xi) =
{
A ∈ A |h (nx (A)) = 0

}
. Therefore, there exists a threshold such that if A < A (xi),

max
{

0, a+ nx (A)
1
2

}
= 0. This implies that A = [A (xi) , 1] . Solving for A (xi) :

a+

[
A (xi)

2

x2
∫ 1
A(xi)

A2dk

] 1
2

= 0,

and rearranging, we have:

3A (xi)
2 = (−ax)2

[
1−A (xi)

3
]
, (2)

which defines A (xi). From the implicity function theorem, we have:

dA (xi)
dx

=
2a2x

[
1−A (xi)

3
]

3A (xi) [2 + a2x2A (xi)]
> 0.

Claim 1 xi →∞ as A (xi)→ 1.

Proof. In Appendix.

Claim 2 A (1) > 0, i.e., some firms shut down in equilibrium.

Proof. In Appendix.

The fact that A is increasing in xi of course also implies that the larger firms A have higher cut-off

types for their highest skilled employee. The maximum quality of x that a given A firm hire:

xCEO (A) =
√

3A

−a (1−A3)
1
2
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and is increasing in A. The lowest firm that has positive profits in this market

x =
√

3A

0.5 (1−A3)
1
2

A = 0.25

Finally, we also verity that the demand in the right tail is in fact decreasing as x increases:

dnx (A)
dx

=
d

{
3A2

x2[1−A(x)3]

}
dx

=
−3A2

{
2x
[
1−A (x)3

]
− 3A (x)2 dA(x)

dx x2
}

x4
[
1−A (x)3

]2
Substituting A (x) and rearranging, we have:

dnx (k)
dx

=
−12xA2

x4 [2 + a2x2A (x)]
[
1−A (x)3

] < 0

So, the demand is strictly decreasing in x, for a given k and a cut off rule is optimal.

For this example, we now explicitly have the measure of skills within a firm

n(x | k) =
3k2

x2
[
1− k̃ (x)3

]
where A (x) solves (2). Normalizing this measure to sum up to one, we obtain the firm’s distribution of

skills. Larger firms hire more workers of all skill types, but from simple comparison of the normalized

densities, we see that the low A firms hire proportionally more low skilled workers. The high A firm’s

skill distribution is therefore heavy in the tail and skewed to the right.

6.2 Decreasing Elasticity of Substitution

The fact that h′(0) = ∞ does nonetheless not necessarily imply that all firms are identical. While

there is full support for all firms, in the absence of CES firm size distributions differ. In particular,

when there is a Decreasing Elasticity of Substitution (DES), ∂σ
∂n < 0, larger firms will hire more skilled

workers.

Proposition 12 Let σ′ < 0. If the density of x is decreasing then:

1. All firms hire workers of all types (full support distributions);

2. Average skills and average wages are higher in larger firms than in smaller firms;

3. The skill and wage distribution in larger firms First-Order Stochastically dominates those in small

firms.

Proof. In Appendix.

Observe that the DES case is the most logical case when the h(·) function is bounded above. As a

result, σ will eventually be decreasing in n.
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7 Deriving the Aggregate Distribution of TFP across Firms

In recent years there has been an sharp increase in the attempts to measure productivity. Observing

the productivity of an economy or a firm is central in understanding the firm’s individual profitability

and the aggregate state of the economy. Bartelsman and Doms (2000) review the empirical literature

that uses longitudinal micro-level data sets, which follow large numbers of establishments or firms over

time. They conclude that the most significant finding is the degree of heterogeneity in productivity

across establishments and firms in nearly all industries examined.

Direct and precise observation of TFP is virtually impossible, all estimation procedures build,

implicitly or explicitly, on a theoretical model in the background. By construction, our model allows

firms to be different in their individual TFP A and to illustrate the theory, our objective is to derive the

distribution of A within the economy. Of course, if we had enough detailed firm-level data on the skill

and wage distribution we could back out the distribution of A. In the absence of such detailed data,

we can nonetheless obtain further information on the distribution of TFP using data from aggregate

distributions, in particular the aggregate distribution of employment (number of workers per firm) or

the aggregate distribution of earnings of CEOs.
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Figure 7: Implied TFP distribution (A) across different firms for different investment costs (θ).
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Suppose the underlying model of the economy is ours, where organizations differ in the distribution

of skills of their workers. We know then that the production technology is not CES, and we can use

information on the distribution of wages of the highest skilled worker in each firm to pin down the

distribution of TFP across different firms. From the firm’s problem, at each skill level xi the first-order

condition holds, including at xCEO. By construction, the CEO is the type for whom n(xCEO) = 0, h′(n)

is evaluated at zero, which is common to all firms. This allows us to identify A from CEO characteristics

only:

A =
w(xCEO)
h′(0)xCEO

.

Instead of using the CEO skill level xCEO, we can also use the investment decision as in section 5

above. Let the convex cost of investment function be denoted by C(x) = bxθ where θ > 1 and b > 0 is

a constant. Then in equilibrium bxθ = w(x) and we can write

A = Kw(xCEO)1−1/θ,

where K = b1/θ

h′(0) is a constant.

Using Compustat Executive Compensation Data, we obtain the distribution of w(xCEO), up to a

constant K, provided we know the θ. Recall that θ measures the curvature of the investment cost.

In Figure 7 we plot the estimated TFP distribution for values θ = 2 and θ = 3. Irrespective of the

horizontal scale which is pinned down by the constant K, and even for different θ’s, what is surprising

is the extent to which there is heterogeneity in TFP across firms. This is consistent with the findings

reported in Bartelsman and Doms (2000), and together with the evidence that skill distributions differ

between firms, this provides support for the hypothesis that firm technology is not CES.

8 Concluding Remarks

There is evidence that diversity within groups and organizations is beneficial for the performance of

those groups (see for example Page (2007)). In this paper we embed a stylized notion of diversity

in an equilibrium framework and show that within-group diversity in general induces between-group

diversity. Firms will in general differ in their skill distribution and more productive firms will have skill

distributions that stochastically dominate. This implies also that they will hire CEOs that are more

skilled. We highlight the fact that assuming CES production technologies for firms is convenient but

highly specific: CES is necessary and sufficient for having identical firms.

We have analyzed the impact of changes in the environment and have shown how mergers and

acquisitions in this framework lead to downsizing. We also derived the induced TFP distribution

within the economy using the compensation of CEOs. We argue that this is a tractable model for

analyzing the aggregate macro implications of organizational diversity in an equilibrium framework.
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9 Appendix

Definition of a non-homogeneous Poisson process

Definition 2 [N (t) , t ≥ 0] is said to be a nonhomogeneous Poisson process with intensity function

λ (t), if:

i. N (0) = 0

ii. [N (t) , t ≥ 0] has independent increments;

iii. Pr [2 or more events in (t, t+ h)] = o (h)

iv. Pr [exactly 1 event in (t, t+ h)] = λ (t)h+ o (h) .

Then if we let,

h (t) =
∫ t

0
λ (s) ds,

it can be shown that:

Pr [N (t) = n] = e−h(t)
[h (t)]n

n!
, n ≥ 0.

Or, in other words, N (t) has a Poisson distribution with mean h (t) . h (t) is said to be the mean value

function of the process.

Alternatively, we can define a non-homogeneous Poisson Process as follows:

Definition 3 N(t) is a nonhomogeneous Poisson process with arrival rate λ (t) if it is a counting

process such that:

i. The increments are independent;

ii. N(0) = 0;

iii. P (N(v)−N(u) = n) = (
R v
u λ(t)dt)n

n! e−
R v
u λ(t)dt.

Derivation of the continuous case. We need to be careful about which assumptions we impose

on n (x) for writing down the continuous case. If we rewrite the model with ∆s, we are using a

partition/refinement argument, which delivers a Riemann integral10. Based on this, we must have a
10A function is Riemann integrable if it is continuous almost everywhere, i.e., it is discontinuous in at most a zero

measure set.
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piecewise continuous n (x). Consider a partition P and an associated set of points X in which Xi ∈ Ii,
where Ii is an interval in the partition P. Then, S [(P,X ) , f ] is defined by:

S [(P,X ) , f ] =
N−1∑
i=1

h (n (Xi))Xi |Ii| .

A function f is integrable if and only if:

lim
|P|→0

S [(P,X ) , f ] =
∫ x

x
h (n (x))xdx

for any (P,X ) . We can show that any piecewise continuous function satisfies integrability. The contin-

uous case can derived from taking the appropriate limit for ∆→ 0

L(n,x) =
[∫

h(n)xdx
]β

A special case with h CES:

L(n,x) =

[
N∑
i=1

nγi x
α
i

]β
then becomes in the continuous case:

L(n,x) =
[∫

nγi x
α
i dni

]β
.

Gross Complements and Gross Substitutes. From the firm’s objective function, we derive

∂2π

∂ni∂nj
= Aβ (β − 1)

[
N∑
i=1

h (ni)xi

]β−2

h′(ni)h′(nj)xixj

Notice that ∂2π
∂ni∂nj

> 0⇐⇒ β > 1. Therefore, β determines whether xi and xj are gross complements

or substitutes.

Claim 3 If β > 1, inputs are gross complements. If β < 1 they are gross substitutes.

For example, let h (ni) = nγi , then we can summarize this in terms of the parameter values for

β ∈ R+ and γ ∈ [0, 1]. The firm’s problem is well-defined for β < 1/γ (a sufficient condition for

concavity is γβ < 1). Then the yellow area is the range of parameters where inputs in production are

complements, and the green area where they are substitutes.

Proof of Lemma 1

Lemma 1 The following two statements hold for a, b and γ constants with a ∈ R, b > 0, γ ∈ [0, 1] :
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β

Substitutes and Strictly concavity

Complements and Strictly concavity

1

1

γ

Strc.

Quasiconcave

Once we have set up the characteristics of firm’s problem, we must define the equilibrium
in our economy. Since we are assuming the approach in which workers don’t value leisure, our
equilibrium is quite simple and involves only profit maximization and market clearing condi-
tions. Later, we endogeneize decisions on investment in education and we adapt our equilibrium
conditions to take these decisions in account.

Definition 4 A Competitive equilibrium in this economy is one in which

• Firms maximize profits πi,

• workers choose the job with the highest wage w(x),

• markets clear.

Let’s explicitly find the equilibrium in this economy. As presented before, firm’s problem is
given by:

π (k;w (·)) = max
n1,...,nN

k

"
NX
i=1

(a+ bnγi )xi

#β
−

NX
i=1

niw (xi)

Then, from F.O.C.s we have:

kβ

"
NX
i=1

(a+ bnγi )xi

#β−1
bγnγ−1i xi = w (xi) , ∀i ∈ {1, ..., N}

4

Figure 8: Complements and Substitutes

1. The elasticity of subsitution σ is constant if and only if h(ni) is of the form a+ bnγi ;

2. L(n) is homothetic if and only if h(·) is of the form a+ bnγi .

Proof. Part 1. Since σ is a constant, we have that:

h′′ (ni) +
1
σni

h′ (ni) = 0

is a homogeneous second order linear differential equation. Considering h′ (ni) = g (ni) we reduce it to

a first order ODE. Solving it, we obtain:

h′ (ni) = h′ (n0) e−
R ni
n0

1
σy
dy

where h′ (n0) is the initial condition. Taking the integral on both sides, we obtain:

h (ni)− h (n0) = h′ (n0)
∫ ni

n0

e
−
R z
n0

1
σy
dy
dz

Then, notice that:

−
∫ z

n0

1
σy
dy =

1
σ

∫ n0

z

1
y
dy =

1
σ

ln y|n0
z =

1
σ

ln
n0

z

Substituting back, we have:

e
−
R z
n0

1
σy
dy =

[
eln(n0

z )
] 1
σ =

(n0

z

) 1
σ
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Substituting back again, we have:

h (ni)− h (n0) = h′ (n0)
∫ ni

n0

(n0

z

) 1
σ
dz

h (ni)− h (n0) = h′ (n0)n
1
σ
0

∫ ni

n0

z−
1
σ dz

Solving the integral, we obtain:

h (ni)− h (n0) = h′ (n0)n
1
σ
0

[
σ

σ − 1
z
σ−1
σ

∣∣∣∣ni
n0

]

Then, rearranging, we have:

h (ni) = h (n0)− σ

σ − 1
h′ (n0)n0 +

σ

σ − 1
h′ (n0)n

1
σ
0 n

σ−1
σ

i

Therefore:

h (ni) = a+ bnγi

where:

a : = h (n0)− σ

σ − 1
h′ (n0)n0

b : =
σ

σ − 1
h′ (n0)n

1
σ
0

γ : =
σ − 1
σ

.

Part 2. We know that, by definition, L (n; x) is homotetic if for any i, j ∈ {1, ..., N} and for any

t > 0, we have that:
∂L(n;x)
∂ni

∂L(n;x)
∂nj

=
∂L(tn;x)
∂ni

∂L(tn;x)
∂nj

But then, we should have:
h′ (ni)
h′ (nj)

=
h′ (tni)
h′ (tnj)

rearranging:
h′ (tnj)
h′ (nj)

=
h′ (tni)
h′ (ni)

Since this must always be satisfied, we must have:

h′ (tni)
h′ (ni)

= c

where c is a constant. But then, we must have:

h′ (tni) = ch′ (ni)
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since the function f (β) = tβ, with t > 0, is continuous and has image on (0,∞), by mean value theorem

we have that there is a (γ − 1) ∈ (0,∞) such that t(γ−1) = c. Therefore, we have:

h′ (tni) = tγ−1h′ (ni)

Therefore, h′ (·) is a homogeneous function of degree γ − 1.

Since h (·) is a univarite function, it is easy to see that it must be of the form dnγ−1
i , where bd is a

constant (Note that h (ni) = h (ni ∗ 1) = nγ−1
i h (1) = dnγ−1

i , where d = h (1)). But then, we have:

h (ni) =
∫
h′ (ni) dni =

∫
dnγ−1

i dni =
d

γ
nγi + a

Define b = d
γ , so we have:

h (ni) = a+ bnγi .

Proof of Proposition 1.

Proposition 1 In equilibrium all firms have the same skill distribution FA(x) equal to the economy’s

skill distribution F (x) if and only if the production technology is CES.

Proof. From the First-Order Condtions of the firm’s problem:

ni
nj

=
(
w (xj)xi
w (xi)xj

) 1
1−γ

Substituting back, we obtain the demand for labor quality xj as a function of wages:

nj (A) =
(
Aβγb2

) 1
1−γβ

(
xj

w (xj)

) 1
(1−γ)

[
N∑
i=1

(
xi

w (xi)
γ

) 1
1−γ
] β−1

1−γβ

Market clearing satisfies: ∑
A

nj (A)µ (A) = m (xj)

where m(xj) = F (xj) − F (xj−1) is the measure of worker type xj . Substituting for the equilibrium

quantity of nj(A) and solving for w (xj), we obtain the equilibrium wages:

w (xj) =
xj

m (xj)
1−γ

[
N∑
i=1

(
xi

w (xi)
γ

) 1
1−γ
] (β−1)(1−γ)

1−γβ
[∑

A

(
Aβγb2

) 1
1−γβ µ (A)

]1−γ

Now, substituting in the demand for wages, we obtain the equilibrium allocations:

nj (A) =
A

1
1−γβm (xj)∑
AA

1
1−γβ µ (k)

.
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Then, looking at the total labor force of a firm with capital A, we have:

n (A) =
N∑
j=1

nj (A) =
A

1
1−γβm∑

AA
1

1−γβ µ (A)

where: m ≡
∑N

j=1m (xj) .

To see this, from the First-Order Conditions we get that the fraction of quality j workers in terms

of the total number of workers is given by:

nj (A)
n (A)

=
A

1
1−γβm (xj) /

∑
AA

1
1−γβ µ (A)

A
1

1−γβm/
∑

AA
1

1−γβ µ (A)
=
m (xj)
m

for every A. Therefore, the distribution of workers inside a firm is exactly the same as the one in any

other firm and mimics the distribution in the market.

Concavity of the firm’s objective function.

Lemma 2 If γβ < 1, then the firm’s objective function as defined generally above is strictly concave,

whenever a ≥ 0.

Proof. Notice that:

∂2π

∂n2
i

= kβ (β − 1)

[
N∑
i=1

(a+ bnγi )xi

]β−2

b2γ2n
(γ−1)2
i x2

i +

kβ

[
N∑
i=1

(a+ bnγi )xi

]β−1

bγ (γ − 1)nγ−2
i xi.

Rearranging:

∂2π

∂n2
i

= kβ

[
N∑
i=1

(a+ bnγi )xi

]β−2

bγnγ−2
i xi

{
(β − 1) bnγi γxi + (γ − 1)

[
N∑
i=1

(a+ bnγi )xi

]}

Then, ∂2π
∂n2

1
< 0 if we have:

kβ

[
N∑
i=1

(a+ bnγi )xi

]β−2

bγnγ−2
1 x1

{
(β − 1) bnγ1γx1 + (γ − 1)

[
N∑
i=1

(a+ bnγi )xi

]}
< 0

Which implies:

(β − 1) bnγ1γx1 + (γ − 1)

[
N∑
i=1

(a+ bnγi )xi

]
< 0

Rearranging, we have:

(γβ − 1) bnγ1x1 + (γ − 1)

[
a

N∑
i=1

xi + b

N∑
i=1

nγi xi

]
< 0
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From our assumption that h′ (·) > 0, we must have b > 0. However, initially we don’t have any

assumptions on a. If we consider a ≥ 0, we notice that a sufficient condition would be γβ < 1 (I’m

already assuming by concavity of h (·) that γ < 1). To get Inada conditions, we necessarily have a = 0.

If a < 0, then we wouldn’t have strict concavity holding for all n.

Let’s now consider the second principal minor. Then, our condition is given by:

k2β2

[
N∑
i=1

(a+ bnγi )xi

]2β−3

b2γ2nγ−2
1 nγ−2

2 x1x2 (γ − 1)

 (γβ − 1) b (nγ1x1 + nγ2x2)

+ (γ − 1)
[
a
∑N

i=1 xi + b
∑N

i=3 n
γ
i xi

]  > 0

Again, for the case in which a ≥ 0, γβ < 1 is a sufficient condition, since γ < 1.

Let’s now consider the third principal minor. Then, our condition is given by:

k3β3

[
N∑
i=1

(a+ bnγi )xi

]3β−4

b3γ3nγ−2
1 nγ−2

2 nγ−2
3 x1x2x3 (γ − 1)2

∗

 (γβ − 1) b (nγ1x1 + nγ2x2 + nγ3x3)

+ (γ − 1)
[
a
∑N

i=1 xi + b
∑N

i=4 n
γ
i xi

]  < 0

Then, again, for the case in which a ≥ 0 , γβ < 1 is a sufficient condition. We also can see the pattern

for these conditions, meaning that γβ < 1 is a sufficient condition for any N and a ≥ 0. Therefore,

γβ < 1 is a sufficient condition for strict concavity of the objective function whenever a ≥ 0.

Proof of Proposition 4.

Proposition 4 If f ′ (xi) < 0, the highest skilled worker xCEO(A) is increasing in A and therefore in

the size of the firm.

Proof. Taking the total derivative of (1) with respect to xi, we have:

−h′−1

(
w (xi)
A (xi)xi

)
g (A (xi))

dA (xi)
dxi

+
∫ A

A(xi)

1

h′′
(
h′−1

(
w(xi)
Axi

)) d
(
w(xi)
xi

)
dxi

g (A)
A

dA = f ′ (xi)

The first term on LHS vanishes, since A (xi) = w(xi)

hxi
⇒ h′−1

(
w(xi)
A(xi)xi

)
= h′−1

(
h
)

= 0. Then, we have:

d
(
w(xi)
xi

)
dxi

∫ A

A(xi)

1

h′′
(
h′−1

(
w(xi)
Axi

)) g (A)
A

dA = f ′ (xi)

d
(
w(xi)
xi

)
dxi

=
f ′ (xi)∫ A

A(xi)
1

h′′
„
h′−1

„
w(xi)
Axi

«« g(A)
A dA

If f ′ (xi) < 0, we have
d

„
w(xi)
xi

«
dxi

> 0 because h′′ < 0. So, we have that dA(xi)
dxi

> 0, i.e., the higher the

skill, the higher the amount of TFP that the firm must have to consider it optimal to hire this worker.

It immediately follows that the highest level of skills that a firm A hires xCEO(A) is increasing in A.
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Proof of Proposition 5.

Proposition 5 There is single-crossing of the densities:
d2
“
ni(A)

n(A)

”
dAdxi

> 0

Proof. Observe that:

dni (A)
dxi

=
1

h′′
(
h′−1

(
w(xi)
xi

))
A

d
(
w(xi)
xi

)
dxi

< 0.

Therefore, as xi increases, ni (A) decreases. Also note that, as we should expect, ni (A) increases with

A:
dni (A)
dA

= − 1

h′′
(
h′−1

(
w(xi)
xi

))
A2

w (xi)
xi

> 0.

So, firms with more capital hire more workers of all skills.

Now consider the distribution of skills. Define:

n (A) =
∫ xCEO(A)

x
ni (A) di

where xCEO (A) is the x such that A = w(x)

hx
. Substituting ni (A), we have:

n (A) =
∫ xCEO(A)

x
h′−1

(
w (xi)
Axi

)
dxi.

Then:

ni (A)
n (A)

=
h′−1

(
w(xi)
Axi

)
∫ xCEO(A)
x h′−1

(
w(xj)
Axj

)
dxj

.

Taking the derivative with respect to xi:

d
(
ni(A)
n(A)

)
dxi

=

1

h′′
„
h′−1

„
w(xi)
Axi

««
A

d

„
w(xi)
xi

«
dxi∫ xCEO(A)

x h′−1
(
w(xj)
Axj

)
dxj

< 0.
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And the cross-derivative:

d2
(
ni(A)
n(A)

)
dAdxi

=



d

„
w(xi)
xi

«
dxi

∗

 1

h′′
„
h′−1

„
w(xi)
Axi

««
A

2

A
h′′′
„
h′−1

„
w(xi)
Axi

««
h′′
„
h′−1

„
w(xi)
Axi

«« w(xi)
xiA2

∫ xCEO(A)
x h′−1

(
w(xj)
Axj

)
dxj

+
∫ xCEO(A)
x

1

h′′

 
h′−1

 
w(xj)
Axj

!! 1
A2

w(xj)
xj

dxj

 1

h′′
„
h′−1

„
w(xi)
Axi

««
A

d

„
w(xi)
xi

«
dxi



[∫ xCEO(A)
x h′−1

(
w(xj)
Axj

)
dxj

]2

=

d

„
w(xi)
xi

«
dxi

 1

h′′
„
h′−1

„
w(xi)
Axi

««
A3




h′′′
„
h′−1

„
w(xi)
Axi

««
»
h′′
„
h′−1

„
w(xi)
Axi

««–2 w(xi)
xi

∫ xCEO(A)
x h′−1

(
w(xj)
Axj

)
dxj

+
∫ xCEO(A)
x

1

h′′

 
h′−1

 
w(xj)
Axj

!! w(xj)
xj

dxj

[∫ xCEO(A)
x h′−1

(
w(xj)
Axj

)
dxj

]2
So, if h′′′ (·) < 0, we have that

d2
“
ni(A)

n(A)

”
dAdxi

> 0 and we obtain our single-crossing property.

Proof of Proposition 8

Proposition 13 As the distribution of TFP becomes more concentrated (in the sense of FOSD) firms

become smaller: the demand at a firm with constant A for each skill type ni decreases, wages increase,

and the skill type of the CEO xCEO decreases.

Proof. Recall that the market clearing condition for skill type i is:∫ A

A(xi)
h′−1

(
w (xi)
Axi

)
dG (A) = f (xi) .

Since h′ (·) is strictly decreasing, h′−1 (·) is also strictly decreasing. Then h′−1
(
w(xi)
Axi

)
is strictly in-

creasing in A. Then, by the definition of First order stochastic dominance, G1 (·) FOSD G (·) means

that we have: ∫ A

A(xi)
h′−1

(
w (xi)
Axi

)
dG1 (A) ≥

∫ A

A(xi)
h′−1

(
w (xi)
Axi

)
dG (A) .

Shifting from G to G1 increases the LHS of the market clearing condition. Since the RHS is a constant,

wages must adjust in equilibrium. Since

d

dw (xi)


∫ A

w(xi)
hxi

h′−1

(
w (xi)
Axi

)
dG (A)

 =
∫ A

A(xi)

1

Axih′′
(
h′−1

(
w(xi)
Axi

))dG (A) < 0,

it follows that changes from G (·) to G1 (·) generate: 1. Higher wages for every skill level xi; 2. Higher

cutoffs A(xi) and therefore lower xCEO; 3. lower demand ni in all firms. To see the effect on demand,
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observe that from F.O.C.s we have:

ni (A) =

 h′−1
(
w(xi)
Axi

)
, if A ≥ A (xi)

0 , otherwise

As w (xi) increases, we have that ni (A) decreases since h′−1 (·) is strictly decreasing. Therefore, each

firm of each type demands less from every skill.

Proof of Proposition 9

Proposition 9 As the marginal productivity increases dh′(n;a)
da > 0, all wages increase.

Proof. Consider the market clearing condition∫ A

w(xi)
h′(0;a)xi

h′−1

(
w (xi)
Axi

; a
)
dG (A) = f (xi) .

Let’s consider the case in which dh′(n;a)
da > 0,then, we have:

d

da

{∫ A

w(xi)
h′(0;a)xi

h′−1

(
w (xi)
Axi

; a
)
dG (A)

}

=
∫ A

w(xi)
h′(0;a)xi

dh′−1
(
w(xi)
Axi

; a
)

da
dG (A) + h′−1

(
h′ (0)

)︸ ︷︷ ︸
=0

g

(
w (xi)

h′ (0; a)xi

)
∗ w (xi)

[h′ (0; a)]2 xi

dh′ (0; a)
da

=
∫ A

w(xi)
h′(0;a)xi

dh′−1
(
w(xi)
Axi

; a
)

da
dG (A) > 0.

In Lemma 3 we establish that h′−1 is increasing in a. As a result, an increase in a raises the LHS, while

keeping the RHS constant. So we need to change wages to preserve the equality. Notice that:

d

dw (xi)


∫ A

w(xi)
hxi

h′−1

(
w (xi)
Axi

)
dG (k)

 =
∫ A

A(xi)

1

Axih′′
(
h′−1

(
w(xi)
Axi

))dG (A) > 0.

Therefore, an increase in a generates a decrease in wages for all skills. From implicit function theorem,

we have:

dw (xi)
da

= −

∫ A
w(xi)

h′(0;a)xi

dh′−1

„
w(xi)
Axi

;a

«
da dG (A)∫ A

w(xi)
h′(0;a)xi

1

Axih′′
„
h′−1

„
w(xi)
Axi

««dG (A)
> 0.

Lemma 3 If h (n; a) is strictly concave and twice differentiable and h′ (n; a) is monotonic in the pa-

rameter a, then h′−1 (n, a) is also monotone in a in the same direction.
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Proof. From the definition of h′−1 (n; a), we have:

h′
(
h′−1 (n; a) ; a

)
= n

Applying total derivative:

h′′
(
h′−1 (n; a) ; a

) dh′−1 (n; a)
da

+
dh′
(
h′−1 (n; a) ; a

)
da

= 0.

Rearranging:
dh′−1 (n; a)

da
= − 1

h′′ (h′−1 (n; a) ; a)
∗
dh′
(
h′−1 (n; a) ; a

)
da

.

Looking at the RHS of the above expression, the first term is positive, since h′′ (·) < 0. Since h′ (·)
is monotonic everywhere, it is also when evaluated at h′−1 (n; a) . Therefore, inversion preserves the

monotonic increase or decrease in a.

Proof of Proposition 10.

Proposition 14 The equilibrium distribution of skills is always uni-modal and has a long right tail.

When there is no fixed cost of investment (a = 0), the density is everywhere downward sloping.

Proof. Given the equilibrium condition (?), the derivate of A(xi) with respect to xi is:

A′ (xi) =
1

h (xi)
2

[
w′ (xi)xi − w (xi)

]
Therefore, we have that A′ (xi) > 0 if and only if w′ (xi)xi − w (xi) > 0. Since w : (0, x) → R is a

strictly convex function, we know that:

w (z) > w (y) + w′ (y) (z − y) , ∀z, y ∈ (0, x)

Taking in our case z = 0 and y = xi,11 we have that:

w (0) > w (xi) + w′ (xi) (0− xi)

since w (0) = a, rearranging, we obtain:

w′ (xi)xi − w (xi) > a

If a = 0, we have that w′ (xi)xi − w (xi) > 0 ⇒ A′ (xi) > 0. Therefore, if there is no sunk cost, the

threshold is always increasing on xi.

Consider now the case in which a > 0. Notice that:

d

dxi

(
w′ (xi)xi − w (xi)

)
= w′′ (xi)xi > 0.

11In principle the most rigorous argument takes z = ε > 0 but arbitrarily small and then use a continuity argument to

obtain the result.
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Therefore, whenever we have A′ (xi) < 0, there is a threshold x∗, such that for every x > x∗, A′ (x) > 0.

Once we have the properties of A(xi), we can derive the characteristics of the equilibrium distribution

f(xi). From (?) we have:

f ′ (xi) =
∫ A

A(xi)

1

h′′
(
h′−1

(
w(xi)
Axi

)) ∗ 1
Ax2

i

[
w′ (xi)xi − w (xi)

]
g (A) dA

Therefore, whether f ′ (xi) < 0 depends on w′ (xi)xi − w (xi) and consequently, on the presence or not

of a fixed cost a. If a = 0, we have that w′ (xi)xi − w (xi) > 0 ⇒ f ′ (xi) < 0, ∀xi. Similarly as before,

since w′ (xi)xi − w (xi) is increasing in xi, even if f ′ (xi) is positive for some xi there is a threshold

x∗ such that ∀x > x∗, f ′ (x) < 0. Notice that the threshold is the same for both conditions. This

establishes the Proposition.

Proof of Claim 1.

Claim 4 xi →∞ as A (xi)→ 1.

Proof. Assume that there is a x∗ ∈ R such that A(x∗) = 1. But then, from (1) we must have:

3A(x∗)︸ ︷︷ ︸
=3

− (−ax∗)2
1−A(x∗)︸ ︷︷ ︸

=0

 = 0

3 = 0

which is a contradiction. Then, we cannot have A(x∗) = 1 for x∗ finite. Since dA(xi)
dxi

> 0, ∀A (xi) ∈ (0, 1),

we must have A (xi)→ 1 as xi →∞.

Proof of Claim 2.

Claim 5 A (1) > 0, i.e., some firms shut down in equilibrium.

Proof. From (2), we have:

3A (1)2 = (−a)2
[
1−A (1)3

]
Now, observe that the LHS of this equality is strictly increasing in A (1), while the RHS is strictly

decreasing. But if A (1) = 0 , we have LHS < RHS, so we must have that A (1) > 0.

Proof of Proposition 12.

Proposition 12 Let σ′ < 0 and for any β not too large. If the density of x is decreasing then:

1. All firms hire workers of all types (full support distributions);

2. Average skills and average wages are higher in larger firms than in smaller firms;
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3. The skill and wage distribution in larger firms First-Order Stochastically dominates those in small

firms.

Proof. The proof considers a local change around the equilibrium allocation for a two firm, two skill

economy. We start from the equilibrium conditions, with endogenous variables: n1
1, n

1
2, n

2
1, n

2
2, w1, w2.

A1β
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

1

)
x1 = w1 (1)

A1β
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

2

)
x2 = w2 (2)

A2β
[
h
(
n2

1

)
x1 + h

(
n2

2

)
x2

]β−1
h′
(
n2

1

)
x1 = w1 (3)

A2β
[
h
(
n2

1

)
x1 + h

(
n2

2

)
x2

]β−1
h′
(
n2

2

)
x2 = w2 (4)

n1
1 + n2

1 = m (x1) (5)

n1
2 + n2

2 = m (x2) (6)

For the general case, when β 6= 1, we can reduce the system to:
A1

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

1

)
−A2

[
h
(
m (x1)− n1

1

)
x1

+h
(
m (x2)− n1

2

)
x2

]β−1

h′
(
m (x1)− n1

1

)
= 0 (F1)

A1

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

2

)
−A2

[
h
(
m (x1)− n1

1

)
x1

+h
(
m (x2)− n1

2

)
x2

]β−1

h′
(
m (x2)− n1

2

)
= 0 (F2)

The main problem is that this is a non-linear non-separable system.

From (F1)
(F2) , we have:

h′
(
n1

1

)
h′
(
n1

2

) =
h′
(
m (x1)− n1

1

)
h′
(
m (x2)− n1

2

)
Then, let’s prepare ourselves for the IFT:

DAF =

[
∂F1
∂A1

∂F1
∂A2

∂F2
∂A1

∂F2
∂A2

]

where:
∂F1

∂A1
=
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

1

)
∂F1

∂A2
= −

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′
(
m (x1)− n1

1

)
∂F2

∂A1
=
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

2

)
∂F2

∂A2
= −

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′
(
m (x2)− n1

2

)
And,

DnF =

∂F1

∂n1
1

∂F1

∂n1
2

∂F2

∂n1
1

∂F2

∂n1
2


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where:

∂F1

∂n1
1

= A1

{
(β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2 [
h′
(
n1

1

)]2
x1 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′′
(
n1

1

)}
−A2

{
− (β − 1)

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 [
h′
(
m (x1)− n1

1

)]2
x1

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′′
(
m (x1)− n1

1

) }

∂F1

∂n1
2

=

{
A1 (β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
h′
(
n1

1

)
h′
(
n1

2

)
x2+

A2 (β − 1)
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2
h′
(
m (x1)− n1

1

)
h′
(
m (x2)− n1

2

)
x2

}

∂F2

∂n1
1

=


A1 (β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
h′
(
n1

2

)
h′
(
n1

1

)
x1+

A2 (β − 1)
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2

∗h′
(
m (x2)− n1

2

)
h′
(
m (x1)− n1

1

)
x1


∂F2

∂n1
2

= A1

{
(β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2 [
h′
(
n1

2

)]2
x2 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′′
(
n1

2

)}
−A2

{
− (β − 1)

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 [
h′
(
m (x2)− n1

2

)]2
x2

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′′
(
m (x2)− n1

2

) }

Then, we have:

detDnF =
∂F1

∂n1
1

∗ ∂F2

∂n1
2

− ∂F2

∂n1
1

∗ ∂F1

∂n1
2

So:

∂F1

∂n1
1

∗ ∂F2

∂n1
2

=
A1

{
(β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2 [
h′
(
n1

1

)]2
x1 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′′
(
n1

1

)}
−A2

{
− (β − 1)

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 [
h′
(
m (x1)− n1

1

)]2
x1

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′′
(
m (x1)− n1

1

) } 

∗


A1

{
(β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2 [
h′
(
n1

2

)]2
x2 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′′
(
n1

2

)}
−A2

{
− (β − 1)

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 [
h′
(
m (x2)− n1

2

)]2
x2

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′′
(
m (x2)− n1

2

) } 
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Rearranging:
∂F1

∂n1
1

∗ ∂F2

∂n1
2

=
A1

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
{

(β − 1)
[
h′
(
n1

1

)]2
x1 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]
h′′
(
n1

1

)}
−A2

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 ∗{
− (β − 1)

[
h′
(
m (x1)− n1

1

)]2
x1

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]
h′′
(
m (x1)− n1

1

) }


∗


A1

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
{

(β − 1)
[
h′
(
n1

2

)]2
x2 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]
h′′
(
n1

2

)}
−A2

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 ∗{
− (β − 1)

[
h′
(
m (x2)− n1

2

)]2
x2

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]
h′′
(
m (x2)− n1

2

) }


and

∂F2

∂n1
1

∗ ∂F1

∂n1
2

=


A1 (β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
h′
(
n1

1

)
h′
(
n1

2

)
x2+

A2 (β − 1)
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2

∗h′
(
m (x1)− n1

1

)
h′
(
m (x2)− n1

2

)
x2


∗


A1 (β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
h′
(
n1

2

)
h′
(
n1

1

)
x1+

A2 (β − 1)
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2

∗h′
(
m (x2)− n1

2

)
h′
(
m (x1)− n1

1

)
x1


Now, consider the symmetric equilibrium in which A1 = A2, n1

1 = m(x1)
2 and n1

2 = m(x2)
2 . Then, we

have:
∂F1

∂n1
1

∗ ∂F2

∂n1
2

∣∣∣∣
A1=A2=A

=

(
2A
[
h

(
m (x1)

2

)
x1 + h

(
m (x2)

2

)
x2

]β−2
)2
 (β − 1)

[
h′
(
m(x1)

2

)]2
x1

+
[
h
(
m(x1)

2

)
x1 + h

(
m(x2)

2

)
x2

]
h′′
(
m(x1)

2

)


∗

 (β − 1)
[
h′
(
m(x2)

2

)]2
x2

+
[
h
(
m(x1)

2

)
x1 + h

(
m(x2)

2

)
x2

]
h′′
(
m(x2)

2

)



and

∂F2

∂n1
1

∗ ∂F1

∂n1
2

=

[
2A (β − 1)

[
h

(
m (x1)

2

)
x1 + h

(
m (x2)

2

)
x2

]β−2

h′
(
m (x1)

2

)
h′
(
m (x2)

2

)]2

x2x1

Then, detDnF becomes:

detDnF = 4A2

[
h

(
m (x1)

2

)
x1 + h

(
m (x2)

2

)
x2

]2β−4

∗
(β − 1)

[
h′′
(
m(x2)

2

) [
h′
(
m(x1)

2

)]2
x1 + h′′

(
m(x1)

2

) [
h′
(
m(x2)

2

)]2
x2

]
+
[
h
(
m(x1)

2

)
x1 + h

(
m(x2)

2

)
x2

]2
h′′
(
m(x1)

2

)
h′′
(
m(x2)

2

)

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If β < 1, this is necessarily different than zero. Otherwise, this could be zero but the set of parameters

in which this occurs has mean zero. Then:

D−1
n F =

1
|detDnF |

 ∂F2

∂n1
2
−∂F1

∂n1
2

−∂F2

∂n1
1

∂F1

∂n1
1


Then: [

∂n1
1

∂A1

∂n1
1

∂A2
∂n1

2
∂A1

∂n1
2

∂A2

]
= −D−1

n F ∗DAF

Substituting, we have:[
∂n1

1
∂A1

∂n1
1

∂A2
∂n1

2
∂A1

∂n1
2

∂A2

]
= − 1
|detDnF |

 ∂F2

∂n1
2
−∂F1

∂n1
2

−∂F2

∂n1
1

∂F1

∂n1
1

 ∗ [ ∂F1
∂A1

∂F1
∂A2

∂F2
∂A1

∂F2
∂A2

]

Then:
∂n1

1

∂A1
= − 1
|detDnF |

(
∂F2

∂n1
2

∗ ∂F1

∂A1
− ∂F1

∂n1
2

∗ ∂F2

∂A1

)
Then:

∂F2

∂n1
2

∗ ∂F1

∂A1
=

A1

{
(β − 1)

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2 [
h′
(
n1

2

)]2
x2 +

[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′′
(
n1

2

)}
−A2

{
− (β − 1)

[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2 [
h′
(
m (x2)− n1

2

)]2
x2

−
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−1
h′′
(
m (x2)− n1

2

) } 
∗
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

1

)
at A1 = A2 = A and symmetric equilibrium, we have:

∂F2

∂n1
2

∗ ∂F1

∂A1

∣∣∣∣
A1=A2=A

=

2A
[
h

(
m (x1)

2

)
x1 + h

(
m (x2)

2

)
x2

]2β−3
 (β − 1)

[
h′
(
m(x2)

2

)]2
x2+[

h
(
m(x1)

2

)
x1 + h

(
m(x2)

2

)
x2

]
h′′
(
m(x2)

2

)
h′(m (x1)

2

)

and

∂F1

∂n1
2

∗ ∂F2

∂A1
=

A1 (β − 1)
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−2
h′
(
n1

1

)
h′
(
n1

2

)
x2+

A2 (β − 1)
[
h
(
m (x1)− n1

1

)
x1 + h

(
m (x2)− n1

2

)
x2

]β−2

∗h′
(
m (x1)− n1

1

)
h′
(
m (x2)− n1

2

)
x2


∗
[
h
(
n1

1

)
x1 + h

(
n1

2

)
x2

]β−1
h′
(
n1

2

)
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again, at A1 = A2 = A, we have:

∂F1

∂n1
2

∗ ∂F2

∂A1

∣∣∣∣
A1=A2=A

=

2A (β − 1)
[
h

(
m (x1)

2

)
x1 + h

(
m (x2)

2

)
x2

]2β−3

h′
(
m (x2)

2

)2

h′
(
m (x1)

2

)
x2

Putting everything together at A1 = A2 = A, we have:

∂F2

∂n1
2

∗ ∂F1

∂A1

∣∣∣∣
A1=A2=A

− ∂F1

∂n1
2

∗ ∂F2

∂A1

∣∣∣∣
A1=A2=A

=

2A
[
h

(
m (x1)

2

)
x1 + h
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Now, let’s calculate ∂n1
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Then, let’s substitute this step by step:
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at A1 = A2 = A, we have:
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and
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Rearranging, we have:
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